Кинетическая энергия пружины

Понятие энергии

Прежде чем рассматривать особенности пружины следует уделить внимание тому, что с ней происходит при сжатии, растяжении и каким образом она оказывает воздействие на тело, окружающую систему. Энергия – скалярная физическая величина, которая применяется для определения формы движения и взаимодействия материи

Важным моментом назовем то, что если система замкнутая, то усилие сохраняется на протяжении длительного периода. Сегодня она окружает нас практически везде и касается довольно большого количества объектов.

Довольно большое распространение получило понятие кинетическая энергия пружины. Она связано с непосредственными особенностями самого изделия. При воздействии определенного усилия на витки, расположенные вдоль одной спирали, формируется сила, которая может использоваться в качестве полезной работы.

Понятие энергии

Для работы двигателей, которые придают движение автомобилям, тракторам, тепловозам, самолетам, нужно топливо, которое является источником энергии. Электродвигатели придают движение станкам при помощи электроэнергии. За счет энергии воды, падающей с высоты, оборачиваются гидротурбины, соединенные с электрическими машинами, производящими электрический ток. Человеку для того, чтобы существовать и работать, также нужна энергия. Говорят, что для того, дабы выполнять какую-нибудь работу, необходима энергия. Что же такое энергия?

  • Наблюдение 1. Поднимем над землей мяч. Пока он пребывает в состоянии спокойствия, механическая работа не выполняется. Отпустим его. Под действием силы тяжести мяч падает на землю с определенной высоты. Во время падения мяча выполняется механическая работа.
  • Наблюдение 2. Сомкнем пружину, зафиксируем ее нитью и поставим на пружину гирьку. Подожжем нить, пружина распрямится и поднимет гирьку на некую высоту. Пружина выполнила механическую работу.
  • Наблюдение 3. На тележку закрепим стержень с блоком в конце. Через блок перекинем нить, один конец которой намотан на ось тележки, а на другом висит грузик. Отпустим грузик. Под действием силы тяжести он будет опускаться книзу и придаст тележке движение. Грузик выполнил механическую работу.

После анализа всех вышеперечисленных наблюдений можно сделать вывод, что если тело или несколько тел во время взаимодействия выполняют механическую работу, то говорят, что они имеют механическую энергию, либо энергию.

Задачи по теме с подробными решениями

Задача 1

Самолет, масса которого составляет 50 тонн, пролетает на высоте 10 километров. Скорость транспортного средства равна 900 км/ч. Требуется рассчитать, какова полная механическая энергия самолета.

Решение

Первым шагом является перевод искомых данных, согласно системе СИ. В таком случае масса самолета составит 50 000 кг, скорость – 250 м/с, а высота – 10 000 м.

Самолет обладает запасом полной энергии, которая включает и потенциальную, и кинетическую.

E = Eп + Ек

Eп = m * g * h

Ек = m * v2 / 2

Таким образом, полная энергия составит:

\(E=m\times g\times h\times \frac{mv^{2}}{2}\)

Если подставить в полученную формулу числовые значения величин из условия задачи, то получим полную энергию:

\(E=6.5625\times 10^{9}\) Дж

Если записать ответ сокращенно, то он примет такой вид:

\(Е = 6,5625\) Гдж.

Ответ: в рассмотренной системе отсчета значение полной механической энергии самолета составит 6.5625 Гдж.

Однако, данную задачу можно решить, принимая за нулевой уровень отметку в 10 километров. Тогда транспортное средство будет характеризоваться лишь запасом кинетической энергии, а значение потенциальной энергии будет равно нулю.

Задача 2

Пружину закрепили к стене и поместили на гладкую поверхность. На конце пружины зафиксировали тело. Растяжение пружины, которая обладает жесткостью в 400 Н/м, происходит при воздействии силы в 80 Н. Требуется рассчитать запас энергии в пружине.

Решение

Согласно условию задачи, поверхность обладает гладкостью, что позволяет сделать вывод о нулевом значении силы трения. Таким образом, потери энергии исключены. Воздействуя на пружину, можно наблюдать ее деформацию. Весь запас энергии будет сосредоточен в ней. Найти данную величину можно по формуле:

\(E=\frac{k(\Delta x)^{2}}{2}\)

Сила упругости равна произведению жесткости на изменение длины пружины:

\(k\times \Delta x=F\)

Деформацию пружины можно рассчитать таким образом:

\(\Delta x=\frac{F}{k}\)

Используя последнее равенство, можно преобразовать формулу для расчета энергии:

\(E=\frac{k(\frac{F}{k})^{2}}{2}=\frac{kF^{2}}{2k^{2}}=\frac{F^{2}}{2k}\)

Далее следует подставить числовые значения в полученное выражение:

\(E=\frac{80^{2}}{2\times 400}=8\) Дж

Ответ: запас энергии в пружине составляет 8 Дж.

Задача 3

Масса пули составляет 9 грамм. Ее выпустили из оружия вертикально в верхнем направлении. Скорость пули при этом составила 700 м/с. Требуется рассчитать ее кинетическую энергию.

Решение

Условия задачи удобно представить в виде рисунка.

Расчет нужно выполнить по формуле:

\(E=\frac{mv^{2}}{2}\)

Перед тем, как подставить в уравнение числовые значения, требуется перевести их в систему СИ. Тогда масса пули составит 0,009 кг. Выражение будет записано следующим образом:

\(E=\frac{0.009\times 49\times 10^{4}}{2}=2200\) Дж

Ответ: запас кинетической энергии пули равен 2200 Дж.

Задача 4

Масса ракеты составляет 0,2 кг. Ее выпустили из орудия вертикально вверх. После этого ракета достигла высоты в 60 метров. Требуется рассчитать значение потенциальной энергии ракеты, характерной для этой отметки.

Решение

Условие задачи можно представить с помощью рисунка.

Для того чтобы рассчитать потенциальную энергию, требуется воспользоваться формулой:

E = m * g * h

Далее необходимо подставить в выражение числовые значения:

Е = 0,2 * 9,8 * 60 = 118 Дж

Ответ: потенциальная энергия ракеты на заданной высоте составит 118 Дж.

Задача 5

Пружину растянули на 5 мм. Коэффициент ее жесткости составляет 10000 Н/м. Требуется вычислить, какова энергия пружины.

Решение

Следует представить условия задачи на рисунке.

Уравнение, с помощью которого можно рассчитать энергию пружины, имеет такой вид:

\(E=\frac{k(\Delta x)^{2}}{2}\)

Далее необходимо привести к системе СИ расстояние, на которое растянули пружину. Оно составит 0,005 м.

После преобразований можно подставить числовые значения в искомую формулу:

\(E=\frac{10^{4}\times 25\times 10^{-6}}{2}=0.125\) Дж

Ответ: энергия пружины составляет 0,125 Дж.

Знание основных формул для расчета кинетической, потенциальной и полной энергии тела позволит решить задачи любой сложности. Наиболее простым способом является выполнение последовательных действий, включая запись условий задачи, графическое изображение системы, представление формул для вычисления энергии, решение уравнения с помощью подстановки числовых значений

Важно отметить, что механическая энергия представляет собой сумму потенциальной и кинетической энергии

Изменение кинетической энергии

Приведенная выше информация указывает на то, что рассматриваемое значение не имеет постоянный показатель. Среди особенностей отметим:

  1. Наибольшее значение характерно максимальному удлинению витков относительно друга друга. При этом не стоит забывать о том, что есть определенное ограничение, касающееся максимального удлинения, так как слишком большая нагрузка становится причиной деформации.
  2. При приближении тела к точке равновесия оно снижается. Это связано с тем, что показатель упругости существенно снижается.

Кроме этого, параметр зависит от воздействия других сил. Примером можно назвать трение, которая снижает скорость перемещения объекта.

Вычисление работы силы упругости

Груз совершил известное перемещение, величину силы упругости мы также знаем, векторы перемещения и силы упругости параллельны. Казалось бы, все ясно – нужно умножить величину силы на величину перемещения и получить значение работы. Однако здесь не все так просто – разберемся почему.

О чем нам говорит формула, которая выражает величину силы упругости? О том, что сила упругости – величина не постоянная, она меняется по мере перемещения груза. И действительно, величина этой силы, как мы видим из формулы, зависит от координаты центра груза. Формула же для работы силы, которую мы применяли раньше, справедлива лишь в том случае, если сила не меняет свою величину по мере движения. Как же тогда быть? Один из вариантов выхода из данной ситуации мог бы состоять в том, что мы применим такой же метод, который применялся нами ранее в разделе кинематика при расчете перемещения тела, движущегося равноускоренно.

Можно всю траекторию движения груза разбить на очень маленькие участки (участки, в пределах которых силу упругости можно считать практически постоянной). Далее в пределах каждого такого участка мы можем рассчитать работу силы упругости ввиду ее практического постоянства. Затем работа на всей области движения груза будет складываться из всех этих маленьких работ на этих участках. Таким образом, мы сможем посчитать работу силы упругости на всей траектории движения груза. На рис. 4 приведены детали такого расчета.

Рис. 4. Зависимость силы упругости от координаты движения

Видно, что если отложить на графике зависимость модуля силы упругости от модуля координаты груза, затем проделать описанное выше разбиение на маленькие участки, то величина работы на каждом маленьком участке численно равна площади фигуры, ограниченной графиком: осью абсцисс и двумя перпендикулярами к этой оси (см. рис. 5).

Рис. 5. Площадь фигуры

Если просуммировать значение работы на каждом участке (площадь маленьких фигур), то получим площадь большой фигуры, показанной на рис. 6.

Рис. 6. Площадь большой фигуры

Поскольку данная фигура является прямоугольной трапецией, то мы можем воспользоваться формулой для расчета площади такой фигуры – это полусумма оснований, умноженная на высоту. В результате преобразований получим такую формулу – работа равна разности между величиной:

К этому результату можно прийти и несколько иным способом. Для вычисления работы силы упругости в этом способе необходимо просто взять среднее значение силы упругости и умножить его на перемещение тела. Это утверждение можно записать как:

,

где  среднее значение силы упругости, которое равно полусумме начального и конечного ее значений. Если данное выражение  подставить в формулу для работы, то при помощи простых алгебраических преобразований мы получим то же самое выражение, что получали ранее:

Как видно из этой формулы, работа зависит лишь от начальной и конечной координаты центра груза, и еще одно замечание: как видно из последней формулы, работа силы упругости никоим образом не зависит от массы груза. Это обусловлено тем, что и сама сила упругости не зависит от этой массы.

Теперь внимательнее посмотрим на последнюю формулу – если вынести -1 за скобки, то получим, что работа есть взятая со знаком минус разность между значениями некоторой величины, равной половине произведения жесткости пружины на квадрат ее удлинения в конечный и начальный моменты времени.

Вспомним, как мы поступили при расчете работы силы тяжести на прошлом уроке. В тот раз мы столкнулись с новой для нас физической величиной, разность между значениями которой в конечной и начальной моменты времени равнялась взятой со знаком « — » работе силы тяжести. Это величина, равная произведению массы тела на ускорение свободного падения и высоту, на которую было поднято тело над некоторым уровнем, мы назвали потенциальной энергией тела, поднятого над землей.

Особенности кинетической энергии при вращении

Сравним формулу кинетической энергии при вращении с формулой кинетической энергии тела для прямолинейного движения:

$$E_k ={v^2 m \over 2}$$

Можно видеть их близость. Но, в формуле для вращения для материальной точки присутствует дополнительный множитель – радиус. Его необходимость объясняется тем, что при повороте на один и тот же угол, материальная точка, расположенная на более далеком расстоянии от центра вращения, проходит больший путь, по сравнению с более близкой точкой. Поэтому и ее мгновенная линейная скорость, а значит, и кинетическая энергия получается больше. Для твердых тел различной формы радиус вращения также учитывается при определении момента инерции.

В том, что у материальной точки с большим радиусом вращения кинетическая энергия больше, легко убедиться, раскручивая груз на шнуре. Если раскручивать груз с постоянной частотой (скажем, один оборот в секунду), то при малой длине шнура это сделать легко, однако, чем длиннее шнур, тем приходится прилагать больше усилий, хотя масса шнура остается постоянной.

Именно поэтому с помощью пращи камень можно метнуть дальше, чем просто рукой. Больший радиус вращения позволяет сообщить камню большую энергию.

Рис. 3. Метание камня с помощью пращи.

Что мы узнали?

Формула кинетической энергии вращающейся материальной точки аналогична формуле кинетической энергии поступательного движения материальной точки. Вместо линейной скорости используется угловая скорость, а вместо массы – момент инерции. Поскольку момент инерции материальной точки зависит от радиуса вращения, кинетическая энергия вращения материальной точки зависит не только от угловой скорости, но и от радиуса вращения.

Тест по теме

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

Вопрос 5

Текст вопроса

Конденсатор колебательного контура заряжают от источника постоянного напряжения, а затем замыкают на ка­тушки с различными индуктивностями: L 1, L 2, L 3. Подберите во втором столбце таблицы слова, правильно характеризующие из­менения параметров гармонических колебаний в колебательном контуре при уменьшении индуктивности катушек в таких опытах

Читать также: Как переточить цепь для продольного пиления

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физиче­ской величины. Цифры в ответе могут повторяться.

Амплитуда колебаний заряда конденсатораЧастота колебанийАмплитуда колебаний силы

Кинетическая энергия – понятие и определение

Определение

Кинетическая энергия – это способность движущегося тела совершать определенную работу.

Например, движущийся автомобиль способен снести находящееся перед ним препятствие, а падающий камень – оставить вмятину на металлической пластинке.

Кинетическая энергия зависит от скорости движения и массы тела. Она описывается формулой:

\(E_k=\frac{m\nu^2}2\)

Единицей измерения кинетической энергии является Джоуль (Дж).

Проведя простые преобразования, легко вывести формулы для вычисления массы тела и скорости движения:

\(m=\frac{2E_k}{\nu^2}\)

\(\nu=\sqrt{\frac{2E_k}m}\)

Из основной формулы видно: во сколько раз изменяется масса тела, во столько раз изменяется и величина кинетической энергии. Например, если масса будет уменьшена или увеличена в 5 раз, то и величина кинетической энергии станет соответственно меньше или больше в 5 раз.

При увеличении скорости кинетическая энергия увеличивается в квадратичной зависимости. Допустим, скорость движения тела стала в 6 раз больше. Соответственно его кинетическая энергия возросла в 36 раз.

Формула кинетической энергии тела справедлива только для скоростей значительно меньших, чем скорость света. Если же скорость движения приближается к 300 000 км/с, то тут начинает действовать теория относительности, созданная Альбертом Эйнштейном.

Кинетическая энергия зависит от особенностей рассмотрения системы. Если тело принимают как макроскопический объект, то оно будет обладать внутренней энергией. В этом случае кинетическая энергия возникнет только в момент его движения.

Это же тело можно рассматривать и с микроскопической точки зрения. Тепловое движение атомов и молекул обуславливает внутреннюю энергию тела. В то же время средняя кинетическая энергия этого движения пропорциональна абсолютной температуре тела. Коэффициент этой пропорциональной зависимости называется постоянной Больцмана.

Кинетическая энергия атомов и молекул при рассмотрении тела на микроскопическом уровне описывается формулой:

\(E_k=\frac32kT\)

где \(k\) – это постоянная Больцмана.

Как возникает кинетическая энергия

Под действием силы F тело массы m начинает движение, и его скорость v будет претерпевать изменения. Попробуем найти связь между работой A, совершенной силой F, и изменением скорости. По определению работа А будет равна произведению силы F на величину смещения s:

$A = F*s$ (1),

Сила, по второму закону Ньютона, равна:

$F = m*a$ (2),

где a — ускорение.

Из законов механики известно, что модуль смещения s при равноускоренном прямолинейном движении связан с модулями начальной v1 и конечной v2 скоростей и ускорения a следующей формулой;

$s = {{v_2^2-v_1^2}\over {2*a}}$ (3).

Отсюда следует выражение для работы:

$A=F*s=m*a*{{v_2^2 – v_1^2}\over 2*a}={m*v_2^2\over 2}-{m*v_1^2\over 2}$ (4).

Физическая величина, равная половине произведения массы тела m на квадрат его скорости, называется кинетической энергией тела Ek. Слово “кинетическая” имеет латинское происхождение (“кинема” — движение).

$E_k = {m*v^2\over 2}$ (5).

Тогда для работы A получим следующую формулу:

$A = E_{k2} – E_{k1}$ (6).

Таким образом, работа силы, приложенной к телу, равна изменению кинетической энергии тела. Поэтому любое движущееся тело обладает кинетической энергией.

Рис. 1. Примеры кинетической энергии:.

Работа и потенциальная энергия тела, поднятого над Землей

Величина потенциальной энергии зависит от выбора нулевого уровня энергии. В поле тяготения Земли нулевым уровнем энергии обладает тело, находящееся на поверхности планеты.

Работа силы тяжести

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

A = – ∆Ep = –(mgh – mgh) = mg(h – h)

Если тело поднимается, сила тяжести совершает отрицательную работу. Если тело падает, сила тяжести совершает положительную работу.

Пример №3. Шарик массой 100 г скатился с горки длиной 2 м, составляющей с горизонталью угол 30о. Определить работу, совершенную силой тяжести.

Сначала переведем единицы измерения в СИ: 100 г = 0,1 кг. Под действием силы тяжести положение тела относительно Земли изменилось на величину, равную высоте горки. Высоту горки мы можем найти, умножим ее длину на синус угла наклона. Начальная высота равна высоте горки, конечная — нулю. Отсюда:

A = mg(h – h) = 0,1∙10(2∙sin30o – 0) =2∙0,5 = 1 (Дж)

Потенциальная энергия протяженного тела

Работа силы тяжести

Потенциальная энергия протяженного тела выражается через его центр масс. К примеру, чтобы поднять лом длиной l и массой m, нужно совершить работу равную:

A = mgh

где h — высота центра массы лома над поверхностью Земли. Так как лом однородный по всей длине, его центр масс будет находиться посередине между его концами, или:

Отсюда работа, которую необходимо совершить, чтобы поднять этот лом, будет равна:

Пример №4. Лежавшую на столе линейку длиной 0,5 м ученик поднял за один конец так, что она оказалась в вертикальном положении. Какую минимальную работу совершил ученик, если масса линейки 40 г?

Переведем единицы измерения в СИ: 40 г = 0,04 кг. Минимальная работа, необходимая для поднятия линейки за один конец, равна:

Работа и изменение потенциальной энергии упруго деформированного тела

Вспомним, что работа определяется формулой:

A = Fs cosα

Когда мы сжимаем пружину, шарик перемещается в ту же сторону, в которую направлена сила тяги. Если мы растягиваем ее, шарик перемещается так же в сторону направления силы тяги. Поэтому вектор силы упругости и вектор перемещения сонаправлены, следовательно, угол между ними равен нулю, а его косинус — единице:

Модуль силы тяги равен по модулю силе упругости, поэтому:

Перемещение определяется формулой:

s = x – x

Следовательно, работа силы тяги по сжатию или растяжению пружины равна:

Но известно, что потенциальная энергия упруго деформированного тела равна:

Следовательно, работа силы, под действием которой растягивается или сжимается пружина, равна изменению ее потенциальной энергии:

Максимальная кинетическая энергия груза

Для простого пружинного маятника полную энергию груза в любой момент времени можно выразить как

  • $E_p$ — потенциальная энергия,
  • $E_k$ — кинетическая энергия,
  • $m$ — масса,
  • $v$ — моментальная скорость,
  • $k$ — коэффициент упругости,
  • $x$ — приращение длины пружины в данный момент.

Задай вопрос специалистам и получи ответ уже через 15 минут!

Максимальную кинетическую энергию можно вычислить как

где $v_ $ — максимальная скорость груза. Однако измерить ее на практике сложно. Проще, опираясь на постоянство суммы кинетической и потенциальной энергий, определить максимальную потенциальную (когда кинетическая равна нулю). Поскольку справедливо и обратное, можно записать:

где $x_ $ — максимальное приращение растяжения пружины. Его легко измерить, а коэффициент упругости посмотреть в справочнике.

Компактный груз, массой 0,5 кг прикреплен к движущейся горизонтально пружине. Ее коэффициент упругости равен 2000 $frac $. Каково было начальное приращение длины пружины, если его максимальная скорость во время колебаний составляет 1 $frac $?

Из условий задачи можно найти максимальную кинетическую энергию груза:

Выразив максимальную потенциальную энергию через приращение длины пружины, составим равенство:

Ответ: $approx 1,6 мм$.

Так и не нашли ответ на свой вопрос?

Просто напиши с чем тебе нужна помощь

Груз математического маятника массой 10 г совершает гармонические колебания. При этом скорость v груза изменяется с течением времени t по закону v = 2sin ( 0,5πt )

Чему равна максимальная кинетическая энергия груза при таких колебаниях?

помогите пожалуйста — вот я знаю Е кин = mv^2/2 но от куда я должна взять значения. что взять из этой формулы? ( v = 2sin ( 0,5πt )) 2 — это скорость, которую можно подставить в Е? 0,5 это w , с этим что то сделать?

оу. не я получила 0,02. Тааак. а в каких это единицах? это равно 2м дж?

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Момент силы и момент импульса относительно оси

Рассмотрение деформации пружины проводится также с учетом момента силы и импульса относительно оси. Эти два параметра позволяют рассчитать все требуемые показатели с более высокой точностью. Довольно распространенным вопросом можно назвать чему равен момент силы – векторная величина, которая определяется векторному произведению радиуса на вектор приложенной силы.

Момент импульса – величина, которая применяется для определения количества вращательного движения.

Среди особенностей подобного показателя можно отметить следующее:

  1. Масса вращения. Объект может характеризоваться различной массой.
  2. Распределение относительно оси. Ось может быть расположена на различном расстоянии от самого объекта.
  3. Скорость вращения. Это свойство считается наиболее важным, в зависимости от конструкции он может быть постоянным или изменяться.

Расчет каждого показателя проводится при применении соответствующей формулы. В некоторых случаях проводится измерение требуемых вводных данных, без которых провести вычисления не получится.

Упругие деформации — источник энергии

Если к пружине с жесткостью k на горизонтальной поверхности присоединить грузик, вытянуть пружину, а затем отпустить грузик, то под действием силы упругости пружины грузик придет в движение и сдвинется на определенное расстояние. Попробуем снова вычислить работу, которую совершит сила упругости при удлинении пружины от начального положения x1 до конечного х2.

Рис. 3. Потенциальная энергия пружины:.

Сила упругости будет изменяться в зависимости от размера деформации. Работа, произведенная силой упругости Fу при смещении пружины из точки x1 в точку x2, будет равна:

$A = F_у (x_1 – x_2)$ (10).

Сила упругости по закону Гука прямо пропорциональна деформации пружины, и среднее ее значение равно:

$F_{уср} = k*{ (x_1 + x_2)\over 2}$ (11).

Подставив в (10) вместо Fу значение из уравнения (11), получаем:

$A = k*{ (x_1 + x_2)\over 2} *(x_1 – x_2)= {k *( x_1^2 – x_2^2)\over 2}$ (12).

Уравнение (12) можно представить в несколько другом виде:

$A = {k*x_1^2\over 2} – { k*x_2^2\over 2}$ (13).

Из уравнения (13) видно, что работа равна разности величины потенциальной энергии Ep в точках х1и х2:

$Ep = {k*x^2\over 2}$ (14),

Из уравнений (13) и (14) следует, что работа силы упругости равна изменению потенциальной энергии пружины. Если в конечной точке х2=0, т.е. пружина не деформирована, то:

$Ep = A$ (15).

Значит потенциальная энергия деформированного тела равна работе, совершенной силой упругости при переходе тела в состояние с нулевой деформацией.

Причина возникновения сил упругости кроется во взаимодействии атомов и молекул тела. При сжимании возникают силы отталкивания между атомами, а при растяжении — силы притяжения, которые стремятся восстановить начальные размеры. Атомы и молекулы в своем составе имеют электроны и протоны — частицы с электрическими зарядами. В результате деформаций изменяются взаимные положения атомов и молекул. Электрические силы стремятся вернуть атомы в начальное положение. Так возникает сила упругости.

Модули упругости различных тел рассчитываются с помощью специальных математических моделей на основании экспериментальных данных. Значения модулей упругости для различных материалов приведены в справочных таблицах.

Что мы узнали?

Итак, мы узнали, что такое кинетическая и потенциальная энергии. С помощью базовых определений выведены формулы кинетической и потенциальной энергии (5), (8) и (14). Потенциальной энергией не может обладать одно тело — это энергия взаимодействия тел. Кинетической энергией обладает любое движущееся тело.

Тест по теме

  1. Вопрос 1 из 11

Начать тест(новая вкладка)

Закон сохранения механической энергии

Согласно установленным законам механическое воздействие консервативной механической системы сохраняется во времени. Этот момент определяет то, что потенциальная энергия деформированной пружины не может возникнуть сама или исчезнуть куда-нибудь. Именно поэтому для ее создания нужно приложить соответствующее усилие.

Рассматриваемый закон относится к категории интегральных равенств. Эта закономерность определяет то, что он складывается их действия дифференциальных законов, является свойством или признаком совокупного воздействия.

Для проведения соответствующих расчетов должна применяться определенная формула. Сила, с которой оказывается воздействие, не является постоянной. Именно поэтому для ее вычисления применяется графический метод. Самая простая зависимость может быть описана следующим образом: F=kx. При применении подобной зависимости построенная координатная линия будет представлена прямой линией, которая расположена под углом относительно системы координат.

Приписать подобному устройству потенциальную энергию можно только в том случае, если она равна максимальной работе и не зависит от условной траектории движения. Проведенные исследования указывают на то, что подобная работа подчиняется закону Гука. Для определения основного показателя применяется следующая формула: U=kk2/2.

Для деформирования витков к ним должно быть приложено определенное усилие, так как в противном случае кинетическая сила не возникнет.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий