Пружинный маятник: амплитуда колебаний, период, формула

Виды пружинного маятника

Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:

  1. Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
  2. Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.

Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:

  1. Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
  2. Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.

Распространены оба варианта исполнения

При этом важно уделить внимание тому, чтобы сила прикладывалась параллельно оси. В противном случае есть вероятность смещения витков, что становится причиной возникновения серьезных проблем, к примеру, деформации

Свободные колебания пружинного маятника

Рассматривая то, чем вызваны свободные колебания пружинного маятника следует уделить внимание действию внутренних сил. Они начинают формироваться практически сразу после того, как телу было передано движение

Особенности гармонических колебаний заключаются в нижеприведенных моментах:

  1. Могут также возникать и другие типы сил воздействующего характера, который удовлетворяют все нормы закона, называются квазиупругими.
  2. Основными причинами действия закона могут быть внутренние силы, которые формируются непосредственно на момент изменения положения тела в пространстве. При этом груз обладает определенной массой, усилие создается за счет фиксации одного конца за неподвижный объект с достаточной прочностью, второго за сам груз. При условии отсутствия трения тело может совершать колебательные движения. В этом случае закрепленный груз называется линейным.

Не стоит забывать о том, что существует просто огромное количество различных видов систем, в которых осуществляется движение колебательного характера. В них также возникает упругая деформация, которая становится причиной применения для выполнения какой-либо работы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Разделы: Физика

Класс: 9

На уроке хотелось бы сразу дать учащимся в сравнении колебания пружинного и математического маятников

Обратить внимание на сходство процессов, одинаковое изменение энергий (кинетической и потенциальной) через одинаковые промежутки времени

Пояснение по форме объяснения учебного материала: на доске удобнее расположить рисунки маятников рядом, разделив доску пополам. Записи для описания характеристик маятников делать на одном уровне.

Цели урока:

  1. Ввести понятия колебательных систем,
  2. Рассмотреть на примерах математического и пружинного маятников особенность свободных колебаний.
  3. Определение параметров идеальных колебательных систем.
  4. Научить выделять существенные признаки колебательных систем.
  5. Формирование потребности в новых знаниях, усвоение предмета.

Демонстрации:

  1. Математический маятник.
  2. Пружинный маятник.

Примеры решений

Задача № 1

Шариком, привязанным к нити, совершено 60 колебаний в течение 2 минут. Необходимо определить, каковы период и частота колебаний шарика.

Решение

\(T =\frac{t}{N}=\frac{120}{60}=2\)

\(V=\frac{1}{T}=\frac{1}{2}=0.5\)

Ответ: период колебаний маятника равен 2 секундам, а частота составляет 0,5 Гц.

Задача № 2

Согласно изображенного графика зависимости координаты от времени, необходимо рассчитать характеристики колебательного движения тела.

 

Решение

А = 20

Т = 0,8

\(V=\frac{1}{T}=\frac{1}{0,8}=1,25\)

\(x(t)=A\sin 2\pi Vt=0.2\sin 2\pi \times 1.25t=0.2\sin 2.5\pi t\)

Ответ: амплитуда колебаний маятника составляет 0,2 метра, период колебаний соответствует 0,8 с, частота колебаний равна 1,25 Гц, уравнение координаты будет записано в следующем виде: \(x(t)=0.2\sin 2.5\pi t\)

Задача № 3

Необходимо определить, какой длиной обладает математический маятник, который совершает гармонические колебания при частоте 0,5 Гц на поверхности Луны. Ускорение свободного падения в данном случае составляет 1,6 м/с2.

Решение

Период колебаний математического маятника рассчитывается по формуле:

\(T =2\pi \sqrt{\frac{L}{g}}\)

Согласно определению:

\(V=\frac{1}{T}\)

Тогда:

\(T=\frac{1}{V}\)

Получим равенство:

\(\frac{1}{V}=2\pi \sqrt{\frac{l}{g}}\)

Для того чтобы выразить длину маятника, необходимо возвести обе части равенства в квадрат:

\(\frac{1}{V^{2}}=4\pi ^{2}\times \frac{l}{g}\Rightarrow l=\frac{g}{4\pi ^{2}V^{2}}\)

\(l=\frac{1.5}{4*3.14 ^{2}*0.5^{2}}\approx 0.16\)

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​\( x \)​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​\( A \)​ – амплитуда колебаний; ​\( \omega t+\varphi_0 \)​ – фаза колебаний; ​\( \omega \)​ – циклическая частота; ​\( \varphi_0 \)​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​\( v \)​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​\( a \)​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​\( F \)​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​\( W_k \)​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​\( \nu \)​ < 16 Гц);
  • звуковой диапазон (16 Гц < \( \nu \) < 20 000 Гц);
  • ультразвук (\( \nu \) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.Шум – хаотическая смесь тонов.

2.2. Свободные колебания. Пружинный маятник window.top.document.title = “2.2. Свободные колебания. Пружинный маятник”;

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.

Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.


Рисунок 2.2.1.Колебания груза на пружине. Трения нет

Круговая частота ω свободных колебаний груза на пружине находится из второго закона Ньютона:

Частота ω называется собственной частотой колебательной системы.

Период T гармонических колебаний груза на пружине равен

При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x, равную

ωT

Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x: ускорение является второй производной координаты тела x по времени t:

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

Уравнение (*) называется уравнением свободных колебаний

Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω или период T. Такие параметры колебательного процесса, как амплитуда xm и начальная фаза φ, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени

Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость
то ,

Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ определяются начальными условиями.

Модель.
Колебания груза на пружине

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил Mупр упругой деформации кручения:

Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k. Второй закон Ньютона для вращательного движения диска записывается в виде (см. §1.23)

I = ICε

По аналогии с грузом на пружине можно получить:

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

Рисунок 2.2.2.Крутильный маятник

Период колебаний маятника

Сравним полученное уравнение с уравнением гармонических колебаний:

$$x(t)=A cos( \omega t+\varphi)$$

Можно видеть, что фаза $\varphi$ в уравнении координаты движения маятника равна нулю, а коэффициент $\sqrt {k\over m}$ представляет собой круговую частоту. Учитывая формулу, связывающей круговую частоту и период, получим формулу периода колебаний пружинного маятника:

$$T={2\pi \over \omega}=2\pi\sqrt {m\over k}$$

Действительно, чем больше масса пружинного маятника, тем дольше будут совершаться колебания. А чем больше жесткость пружины, тем период колебаний будет меньше. Но величины эти связаны с периодом не прямо, а через коренную зависимость, то есть, для увеличения периода маятника вдвое, надо либо увеличить массу маятника вчетверо, либо во столько же раз уменьшить жесткость пружины.

Рис. 2. Период колебаний пружинного маятника.

В реальности на маятник всегда действует сила тяжести, кроме того, в нем происходят потери, связанные с трением и нагревом пружины. Поэтому, его колебания будут затухающими, а их период будет немного отличаться от расчетного. Наиболее близким к идеальному пружинному маятнику является механизм часового балансира.

Рис. 3. Часовой балансир.

Что мы узнали?

Пружинный маятник – это точечная масса, двигающая под воздействием пружины постоянной жесткости. Период колебаний пружинного маятника пропорционален корню из отношения его массы к жесткости пружины.

Тест по теме

  1. Вопрос 1 из 5

    Пружинный маятник – это…

    • незакрепленная пружина
    • некоторая масса в невесомости
    • система связанных частиц
    • масса, двигающая только под действием силы пружины

Начать тест(новая вкладка)

Уравнения колебаний пружинного маятника

Колебания пружинного маятника совершаются по гармоническому закону. Формула, по которой проводится расчет, выглядит следующим образом: F(t)=ma(t)=-mw2x(t).

В приведенной выше формуле указывается (w) радиальная частота гармонического колебания. Она свойственна силе, которая распространяется в границах применимости закона Гука. Уравнение движения может существенно отличаться, все зависит от конкретного случая.

Если рассматривать колебательное движение, то следует уделить внимание следующим моментам:

  1. Колебательные движения наблюдаются только в конце перемещения тела. Изначально оно прямолинейное до полного освобождения усилия. При этом сила упругости сохраняется на протяжении всего времени, пока тело находится в максимально отдаленном положении от нуля координат.
  2. После растяжения тело возвращается в исходное положение. Возникающая инерция становится причиной, по которой может оказываться воздействие на пружину. Инерция во многом зависит от массы тела, развитой скорости и многих других моментов.

В результате этого возникает колебание, которое может длиться в течение длительного периода. Приведенная выше формула позволяет провести расчет с учетом всех моментов.

Презентация на тему: ” И ССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ОТ МАССЫ ГРУЗА, ЖЁСТКОСТИ ПРУЖИНЫ, АМПЛИТУДЫ КОЛЕБАНИЙ И ТЕМПЕРАТУРЫ ВОЗДУХА. Работа учащихся.” — Транскрипт:

1

И ССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ОТ МАССЫ ГРУЗА, ЖЁСТКОСТИ ПРУЖИНЫ, АМПЛИТУДЫ КОЛЕБАНИЙ И ТЕМПЕРАТУРЫ ВОЗДУХА. Работа учащихся 9 класса МОУ «Старовыслинская ООШ» Шингалова Радия и Надукова Дениса 2011г. Учитель: Потапов Н.А.

2

Ц ЕЛЬ НАШЕЙ РАБОТЫ : Исследовать зависимость периода колебаний пружинного маятника от массы груза, жёсткости пружины, амплитуды колебаний и температуры воздуха.

3

В ВЕДЕНИЕ. В настоящее время в технике и быту используются различные виды пружины. Твердые тела и материалы, которыми располагает человечество, во многом определяет уровень его технического развития. Изучая свойства твердых тел, мы заинтересовались упругими свойствами пружины и решили исследовать их.

4

П ОДГОТОВКА К ЭКСПЕРИМЕНТУ Для проведения экспериментов подобрали следующее оборудование: штатив с 2-мя лапками, пружина 1 (к 1 =6,4 Н/м), пружина 2 (к 2 =21,6Н/м), набор грузов массой по 100г, линейка, секундомер, динамометр.

5

ПЕРИОД КОЛЕБАНИЯ Одной из важных характеристик колебательного движения является период колебания – интервал времени, в течение которого происходит одно полное колебание. Связь периода колебаний пружинного маятника от массы груза и жёсткости пружины известна:

6

П ЛАН ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА : Приготовить приборы и оборудования. Исследовать зависимость периода колебаний пружинного маятника от массы груза, жёсткости пружины, амплитуды и температуры воздуха. Заполнение таблиц измерений. Вычерчивание графиков зависимостей. Анализ графиков зависимостей периода от разных параметров. Обобщение результатов.

7

Э КСПЕРИМЕНТ 1 И ССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ОТ МАССЫ ГРУЗА. Подвесим к штативу пружину 1. Возьмем гирю массой 100г и прикрепим к пружине. С помощью секундомера определим время 10 колебаний пружинного маятника. Повторим эксперимент с гирями 200г и 300г. Определим по формуле период колебаний: Результаты измерений и вычислений запишем в таблицу 1:

8

ГРАФИК ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ОТ МАССЫ ГРУЗА ВЫВОД: Период колебания пружинного маятника пропорционален корню квадратному из массы тела: Т ~.

9

Э КСПЕРИМЕНТ 2 И ССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ОТ ЖЁСТКОСТИ ПРУЖИНЫ Подвесим к штативу пружину 2. Возьмем гирю массой 100г и прикрепим к пружине. С помощью секундомера определим время 10 колебаний пружинного маятника. Повторим эксперимент с гирями 200г и 300г. Определим по формуле период колебаний: Результаты измерений и вычислений запишем в таблицу 2:

10

ГРАФИК ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ОТ ЖЁСТКОСТИ ПРУЖИНЫ ВЫВОД : Период колебаний пружинного маятника зависит обратно пропорционально жесткости пружины:.

11

Э КСПЕРИМЕНТ 3 И ССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ОТ АМПЛИТУДЫ КОЛЕБАНИЙ Результаты измерений и вычислений запишем в таблицу 3: Не изменяя массы груза, жесткости пружины, установим зависимость периода колебаний от амплитуды. Повторим эксперимент 1 при разных амплитудах колебаний.

12

ГРАФИК ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ОТ АМПЛИТУДЫ КОЛЕБАНИЙ ВЫВОД: Эксперимент подтверждает, что период свободных колебаний пружинного маятника не зависит от амплитуды колебаний, а полностью определяется собственными характеристиками колебательной системы (жесткостью k и массой груза m).

13

Э КСПЕРИМЕНТ 4 И ССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПЕРИОДА КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА ОТ ТЕМПЕРАТУРЫ. Для исследования зависимости периода колебаний пружинного маятника от температуры повторили эксперимент 1 во дворе школы при другой температуре ( t= -20 0С ). ВЫВОД : Период колебания пружинного маятника не зависит от температуры.

14

О БОБЩЕНИЕ В результате экспериментов мы выяснили, что период колебаний пружинного маятника зависит от массы тела, жёсткости пружины и не зависит от амплитуды колебаний и температуры.

15

Л ИТЕРАТУРА : Учебник по физике для 9 класса средней школы Н.М. Шахмаева, С.Н. Шахмаева, Д.Ш. Шодиева,-М. Просвещение.1990г. Кикоин И.К., Кикоин А.К. Физика. Учебник для 9кл.-М. Просвещение, 1990г. Громов С.В., Родина Н.А.. Физика. Учеб. Для 8кл.-М. Просвещение. 2000г. Сеть Интернет.

Сила упругости в пружинном маятнике

Следует учитывать тот момент, что до деформирования пружины она находится в положении равновесия. Приложенная сила может приводить к ее растягиванию и сжиманию. Сила упругости в пружинном маятнике рассчитывается в соответствии с тем, как воздействует закон сохранения энергии. Согласно принятым нормам возникающая упругость пропорциональна смещению тела. В этом случае кинетическая энергия рассчитывается по формуле: F=-kx. В данном случае применяется коэффициент жесткости пружины.

Выделяют довольно большое количество особенностей воздействия силы упругости в пружинном маятнике. Среди особенностей отметим:

  1. Максимальная сила упругости возникает на момент, когда тело находится на максимальном расстоянии от положения равновесия. При этом в подобном положении отмечается максимальное значение ускорение тела. Не следует забывать о том, что может проводится растягивание и сжатие пружины, оба варианта несколько отличается. При сжатии минимальная длина изделия ограничивается. Как правило, она имеет длину, равную диаметру витка умноженное на количество. Слишком большое усилие может стать причиной смещения витков, а также деформации проволоки. При растяжении есть момент удлинения, после которого происходит деформация. Сильное удлинение приводит к тому, что возникающей силы упругости недостаточно для возврата изделия в первоначальное состояние.
  2. При сближении тела к месту равновесия происходит существенное уменьшение длины пружины. За счет этого наблюдается постоянное снижение показателя ускорения. Все это происходит за счет воздействия усилия упругости, которая связано с типом применяемого материала при изготовлении пружины и ее особенностями. Длина уменьшается за счет того, что расстояние между витками снижается. Особенностью можно назвать равномерное распределение витков, лишь только в случае дефектов есть вероятность нарушения подобного правила.
  3. На момент достижения точки равновесия сила упругости снижается до нуля. Однако, скорость не снижается, так как тело движется по инерции. Точка равновесия характеризуется тем, что длина изделия в ней сохраняется на протяжении длительного периода при условии отсутствия внешнего деформирующего усилия. Точка равновесия определяется в случае построения схемы.
  4. После достижения точки равновесия возникающая упругость начинает снижать скорость перемещения тела. Она действует в противоположном направлении. При этом возникает усилие, которое направлено в обратную сторону.
  5. Дойдя крайней точки тело начинает двигаться в противоположную сторону. В зависимости от жесткости установленной пружины подобное действие будет повторятся неоднократно. Протяженность этого цикла зависит от самых различных моментов. Примером можно назвать массу тела, а также максимальное приложенное усилие для возникновения деформации. В некоторых случаях колебательные движения практически незаметны, но они все же возникают.

Приведенная выше информация указывает на то, что колебательные движения совершаются за счет воздействия упругости. Деформация происходит за счет приложенного усилия, которое может варьировать в достаточно большом диапазоне, все зависит от конкретного случая.

Колебательные движения. Формулы

Такие движения относят к явлениям с разной физической природой с подчинением общим закономерностям. Запись колебания тока в электрической цепи и математического маятника производится одним и тем же уравнением. Различная природа колебательных движений позволяет рассматривать их с единой точки зрения, исходя из общности закономерностей.

Определение 2

Механические колебания – это периодические или непериодические изменения физической величины, описывающей механическое движение (скорость, перемещение и так далее).

Когда в заданной среде атомы располагаются очень близко или молекулы испытывают силовое воздействие, наблюдается возбуждение механических колебаний. Это говорит о том, что процесс будет иметь конечную скорость, зависящую от свойств среды, которая распространяется от точки к точке. Так возникают механические волны. Явный пример – звуковые волны в воздухе.

Волновые процессы и колебания разной природы имеют много общего, а их распространение может быть описано аналогичными математическими уравнениями. Это подтверждает единство материального мира.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий