Титановые сплавы

Получение

Брусок кристаллического титана (чистота 99,995 %, вес 283 г, длина 14 см, диаметр 25 мм), изготовленный на заводе «Уралредмет» иодидным методом ван Аркеля и де Бура

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

TiO2+2C+2Cl2→TiCl4+2CO{\displaystyle {\mathsf {TiO_{2}+2C+2Cl_{2}\rightarrow TiCl_{4}+2CO}}}

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

TiCl4+2Mg→2MgCl2+Ti{\displaystyle {\mathsf {TiCl_{4}+2Mg\rightarrow 2MgCl_{2}+Ti}}}

Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета, где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000—1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

2CaO→2Ca+O2{\displaystyle {\mathsf {2CaO\rightarrow 2Ca+O_{2}}}}

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

O2+C→CO2{\displaystyle {\mathsf {O_{2}+C\rightarrow CO_{2}}}}
TiO2+2Ca→Ti+2CaO{\displaystyle {\mathsf {TiO_{2}+2Ca\rightarrow Ti+2CaO}}}

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора.

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

Применение титана для изготовления спортивного инвентаря

Причина популярности использования титана в спортивном инвентаре проста — он позволяет получить превосходящее любой другой металл соотношение веса и прочности. Использование титана в велосипедах началось примерно 25-30 лет назад и было первым применением титана в спортивном инвентаре. В основном используются трубы, в том числе поставляемые ООО «Вариант», из сплава Gr.9 Тi3Аl-2.5V (АSТМ B338 Grade 9). Другие части производимые из титановых сплавов включают в себя тормоза, звёздочки и пружины сидений. Использование титана в производстве клюшек для гольфа впервые началось в конце 80-х — самом начале 90-х годов производителями клюшек в Японии. До 1994-1995 годов это применение титана было практически неизвестно в США и в Европе. Ситуация изменилась, когда компания Callaway представила на рынок свою титановую клюшку, производимую компанией Ruger Titanium и названную Great Big Bertha. В связи с очевидными преимуществами и с помощью хорошо продуманного компанией Callaway маркетинга, титановые клюшки моментально приобрели огромную популярность. В течение короткого периода времени титановые клюшки прошли путь от эксклюзивного и дорогого инвентаря небольшой группы игроков до широкого использования большинством гольфистов (по прежнему оставаясь более дорогими по сравнению со стальными клюшками).

Титан применяют в изготовлении рам для велосипедов. В США тремя наиболее часто используемыми в велосипедной промышленности сортами титана 3-2.5 являются: — сорт AMS 105, то же самое вещество соответствует наименованию 747. Этот материал отвечает всем требованиям стандарта AMS (Аэрокосмическая спецификация материалов) для гидравлических труб. Теоретически, покупка труб AMS 105 непосредственно у производителя дает неограниченный выбор диаметров и толщины стенок трубы. В действительности, существует много ограничений на минимальную партию заказа и в связи с этим, многие производители велосипедных рам, предпочитают заказывать титановые трубы у . Покупатели иногда добавляют или изменяют стандартные спецификации труб AMS. Трубы MTS325 фирмы Merlin отличаются от труб AMS тем, что имеют более строгие допущения для структуры поверхности. Трубы фирмы Merlin также превосходят трубы AMS по минимальной прочности на разрыв при растяжении и пределу текучести. — «Спортивный сорт» Grade 9. Трубы из титана Gr.9 спортивного сорта дешевле, так как они подвергаются меньшему числу шагов обработки, что позволяет снизить цену. Однако, сокращение цены негативно сказывается на формовке труб и структуре поверхности, как изнутри, так и снаружи.

Трубы для гоночных велосипедов и другие детали изготавливают из сплава АSТМ B338 Grade 9 (Тi3Аl-2.5V), поставляемого ООО «Вариант». На удивление, значительное количество титанового листа используется при производстве ножей для подводного плавания. Большинство производителей используют титановые листы ВТ6 (сплав Тi6Аl-4V или Grade 5, или Gr.5), но этот сплав не обеспечивает долговечность кромки лезвия, как другие более прочные сплавы. Некоторые производители переключаются на использование сплава ВТ23. Литые титановые подковы дают значительное уменьшение веса по сравнению со стальными, при этом обеспечивая необходимую прочность. К сожалению, это применение титана не вошло в жизнь, потому что титановые подковы искрили и пугали лошадей. Немногие согласятся использовать титановые подковы после первых неудачных опытов. Компания Titanium Beach, расположенная в Ньюпорт Бич, Калифорния (Newport Beach, Саlifornia), разработала лезвия для коньков из сплава Тi6Аl-4V Gr.5 (Grade 5 или ВТ6). К сожалению, здесь опять проблема долговечности кромки лезвий. Мы думаем, что у этого продукта есть шанс на жизнь при условии использования производителями более прочных сплавов, таких как 15-3-3-3 или ВТ-23. Титан очень широко используется в альпинизме и туризме, практически для всех предметов, которые альпинисты и туристы несут в своих рюкзаках: бутылки, чашки, наборы для приготовления пищи, столовая посуда, в основном сделанные из коммерчески чистого титана — листов, прутков и труб ВТ1-00 (Grade 1) и ВТ1-0 (Grade 2). Другими примерами альпинистского и туристского снаряжения являются компактные печки, стойки и крепления палаток, ледорубы и ледобуры. Производители вооружения недавно начали производить титановые пистолеты как для спортивной стрельбы, так и для правоохранительных органов.

Основные свойства титана

  • Цвет: серебристо-белый
  • Плотность: 4,54 г/см³
  • Температура плавления: 1668°С
  • Температура кипения: 3260°С
  • Теплопроводность: 21.9 Вт/(м·К)
  • Атомный номер: 22
  • Атомная масса: 47,9
  • Удельная теплота плавления: 358 кДж/кг
  • Удельная теплоемкость (при 20°С): 0,54 кДж/(кг.°С)
  • Модуль упругости: 112 ГПа

Механические свойства титана в большой степени зависят от содержания примесей, особенно Н, О, N и С, образующих с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды. Небольшое содержание кислорода, азота, углерода повышает твердость и прочность, но при этом значительно уменьшается пластичность, снижается коррозионная стойкость, ухудшается свариваемость, способность к пайке и штампуемость. Титан обладает высокими прочностью и удельной прочностью в условиях глубокого холода.

Технический титан хорошо обрабатывается давлением при 20-25°С и повышенных температурах. Из него изготовляют все виды прессованного и катаного полуфабриката (листы, трубы, проволоку, поковки и др.). Ковку проводят при температуре 1000-750°С, горячую прокатку – на 100°С ниже температуры ковки. Горячей прокаткой получают листы толщиной более 6 мм, листы меньшей толщины изготовляют холодной прокаткой или с нагревом до 650-700°С. Температура прессования 950-1000°С. Титан хорошо сваривается аргонодуговой и всеми видами контактной сварки. Сварной шов обладает хорошим сочетанием прочности и пластичности. Прочность шва составляет 90% прочности основного металла.

Титан плохо обрабатывается резанием, налипает на инструмент, что приводит к его быстрому износу. Для обработки титана требуется инструмент из быстрорежущей стали и твёрдых сплавов, малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение. Недостатком титана является также низкая антифрикционность.

Титановые сплавы

Достоинством титановых сплавов по сравнению с титаном являются более высокие прочность и жаропрочность при достаточно хорошей пластичности, высокой коррозионной стойкости и малой плотности. Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении. Самым распространённым в мире титановым сплавом является сплав Ti-6Al-4V, который в российской классификации имеет обозначение ВТ6. Для изготовления деталей методами порошковой технологии используют сплавы ВТ5, ВТ5-1, ОТ4, ВТЗ-1 и другие.

По технологии изготовления титановые сплавы подразделяются на деформируемые, литейные и порошковые. По механическим свойствам титановые сплавы подразделяются на сплавы нормальной прочности, высокопрочные, жаропрочные, повышенной пластичности. По способности упрочняться с помощью термической обработки они делятся на упрочняемые и неупрочняемые термической обработкой; по структуре в отожженном состоянии они классифицируются на а-, псевдо-а, а + р, псевдо-р и р-сплавы.

Применение титановых сплавов

  • В авиастроении, ракетостроении: каркасные детали, обшивка, топливные баки, детали реактивных двигателей, диски и лопатки компрессоров, детали воздухозаборника, детали корпусов ракетных двигателей второй и третьей ступени и т.д.
  • В судостроении: обшивка корпусов судов и подводных лодок, сварные трубы, гребные винты, детали насосов и др.
  • В химической промышленности: реакторы для агрессивных сред, насосы, змеевики, центрифуги и др.
  • В гальванотехнике: ванны для хромирования, анодные корзины, теплообменники, трубопроводы, подвески и др.
  • В газовой и нефтяной промышленности: фильтры, седла клапанов, резервуары, отстойники и др.
  • В криогенной технике: детали холодильников, насосов компрессоров, теплообменники и др.
  • В пищевой промышленности: сепараторы, холодильники, ёмкости для продуктов, цистерны и др.
  • В медицинской промышленности: инструмент, наружные и внутренние протезы, внутрикостные фиксаторы, зажимы и др.

Марки и классы титана

Титановая губка
ТГ-100 ТГ-110 ТГ-120 ТГ-130 ТГ-150
ТГ-90 ТГ-Тв      
Титан технический
ВТ1-0 ВТ1-00 ВТ1-1
Титановый литейный сплав
ВТ14Л ВТ1Л ВТ20Л ВТ21Л ВТ3-1Л
ВТ5Л ВТ6Л ВТ9Л    
Титановый деформируемый сплав
АТ-6 ВТ14 ВТ15 ВТ16 ВТ20
ВТ22 ВТ23 ВТ3-1 ВТ5 ВТ5-1
ВТ6 ВТ6С ВТ9 ОТ4 ОТ4-0
ОТ4-1 ПТ3В ПТ7М ТС6  

Особенности титановых сплавов и их получения

Общие особенности, которые имеют марки титана:

  • немагнитность (отсутствие реакции на воздействие магнитного поля или его создание);
  • прочность в сочетании с низкой плотностью, дающие небольшой вес и поразительную хладостойкость (последнее свойство даёт «зелёный свет» применению титана в условиях постоянного и сильного холода);
  • технологичность в процессе прессования (благодаря этому сплав используется, как заготовка для обработки прессом);
  • высокая коррозионная стойкость (сплав настолько хорошо выдерживает высокую влажность, что может применяться даже в воде).

Сплав проявляет свои механические свойства в зависимости от содержания внутри него таких веществ, как водород, азот, кислород и углерод. Именно они образуют с титаном, основным элементов сплава, твёрдые соединения, называемые в химии нитритами, оксидами, гидридами, карбидами. Так, повышение содержания перечисленных элементов влияет на сплав в сторону увеличения плотности, твёрдости и уменьшения пластичности, способности подвергаться сварке (штамповке и пайке) либо противостоять коррозии. Сплав при большом содержании водорода значительно увеличивает свою хрупкость.

Метод изготовления сплава из титана зависит от той разновидности материала, которую необходимо получить на выходе. Например, чистейший йодный титан-сплав можно произвести путём диссоциации термического типа, в которой участвует четырёхйодистый сплав, либо применяется способ зонной плавки. Однако, благодаря невысокому модулю упругости титана, изготовление жёстких конструкций из данного составного вещества становится затруднительным, поэтому не производится.

Технология литья из титана

Сложность технологии титанового литья обуславливается высокой температурой плавления и очень высокой химической активностью жидкого титана. Он пытается вступить в реакцию со всеми газами, содержащимися в воздухе. Поэтому литье титана традиционно проводили в атмосфере инертных газов. Для этого плавильные печи изолировали от атмосферы, нагнетая в них специальные газы и создавая избыточное давление.

Технология литья из титана

Впоследствии были разработаны вакуумные плавильни-литейные установки. Они объединяют в одном вакуумированном объеме, процессы расплавления металла, его литья и остывания отливки. Литье производится в графитовые формы. Наравне с этой технологией применяется и метод вакуумного литья по выплавляемым моделям. Используется также и технология оболочечного литья.

Современные методы литья позволяют получать прочные и однородные отливки, удовлетворяющие самым придирчивым конструктивным требованиям. Метод литья также обладает преимуществом перед механической обработкой на станках и сваркой лучшим коэффициентом использования металла. Многие производители стали шире применять литые детали вместо фрезерованных.

В художественном литье металл широкого применения не нашел из-за сложности производства. Широкую известность в мире искусства получила первая отлитая из титана статуя Юрия Гагарина в Москве.

Области применения титана

Область использования металла была бы значительно шире, если бы не высокая стоимость его получения. Из-за этого применяют титан лишь в тех областях, где использование столь дорогого вещества экономически оправдано. Обуславливает применение не только прочность и легкость, но и стойкость к коррозии, сравнимая со стойкостью благородных металлов и долговечности.

Свойства металла необыкновенно сильно зависят от чистоты, поэтому применение технического и чистого титана рассматриваются как 2 отдельных вопроса.

О том, благодаря каким свойствам титан так широко используется в промышленности, расскажет это видео:

Технический металл

Технический титан может содержать разнообразные примеси, не сказывающиеся на химических свойствах вещества, однако имеющих влияние на физические. Технический титан теряет такое ценное качество, как жаропрочность и способность работать при температурах выше 500–600 С. А вот коррозийная его стойкость никак не уменьшается.

  • Этим и обусловлено его применение – в химической промышленности и в любой другой области, где необходимо обеспечить стойкость изделий в агрессивных средах. Из титана изготавливают емкости для хранения, арматуру, части реакторов, трубопроводов и насосов, назначением которых является перемещение неорганических и органических кислот и оснований. Такими же свойствами в большинстве своем обладают и титановые сплавы.
  • Малый вес совместно с коррозийной стойкостью обеспечивает и другое применение – при изготовлении транспортной техники, в частности, железнодорожного транспорта. Использование титановых листов и прутков при изготовлении вагонов и поездов позволяет уменьшить массу составов, а, значит, уменьшить размеры букс и шеек, сделав тягу более эффективной.

В обыкновенных автомобилях из титана изготавливают системы отведения отработанных газов и витые пружины. В гоночных автомобилях титановые движущие узлы позволяют заметно облегчить машину и улучшить ее свойства.

  • Незаменим титан в производстве бронетанковой техники: вот где соединение прочности и легкости оказывается решающим.
  • Высокая коррозийная стойкость и легкость делает материал привлекательным и для военно-морского дела. Титан применяют при изготовлении тонкостенных труб и теплообменников, выхлопных глушителей на подводных лодках, клапанов, пропеллеров, элементов турбин и так далее.

Изделия из титана (фото)

Чистый металл

Чистый металл проявляет очень высокую жаропрочность, способность работать в условиях высокой нагрузки и высокой температуры. А, учитывая его малый вес, применение металла в ракето- и авиастроении оказывается очевидным.

  • Из металла и его сплавов изготавливают детали крепления, обшивку, части шасси, силовой набор и так далее. Кроме того, материал используется при конструировании авиационных двигателей, что позволяет снизить их вес на 10–25%.
  • Ракеты при прохождении через плотные слои атмосферы испытывают чудовищные нагрузки. Применение титана и его сплавов позволяет разрешить задачу статической выносливости аппарата, усталостной прочности и в какой-то мере ползучести.
  • Еще одно применение чистого титана – изготовление деталей электровакуумных приборов, рассчитанных на эксплуатацию в условиях перегрузок.
  • Незаменим металл в производстве криогенной техники: прочность титана с понижением температуры только увеличивается, но при этом сохраняется некоторая пластичность.
  • Титан является едва ли не самым биологически инертным веществом. Коммерчески чистый металл используют для изготовления всех видов внешних и внутренних протезов вплоть до сердечных клапанов. Титан совместим с биологической тканью и не вызвал ни единого случая аллергии. Кроме того, материал применяют для хирургических инструментов, инвалидных костылей, колясок и так далее.

Однако при всей своей стойкости к температурам и долговечности металл не используется при изготовлении подшипников, втулок и других деталей, где предполагается трение. Титан обладает низкими антифрикционными свойствами и с помощью добавок этот вопрос не решается.

Титан хорошо полируется, анодируется – цветное анодирование, поэтому часто применяется в художественных произведениях и в архитектуре. Примером может послужить памятник первому искусственному спутнику земли или памятник. Ю. Гагарину.

Про маркировку на изделиях из титана, инструкции по его применению и иные важные моменты использования металла в строительстве, расскажем ниже.

В видео ниже показан процесс андонирования титана:

Виды сплавов

Титановые сплавы можно разделить на три большие группы:

  1. Соединения на основе химических соединений. Представители этой группы имеют жаропрочную структуру и низкую плотность. Снижение плотности напрямую влияет на снижение веса материала. Такие сплавы используют при изготовлении деталей для автомобилей, каркасов для летательных аппаратов и корпусов для кораблей.
  2. Жаропрочные сплавы с низкой плотностью. Это аналог соединений с никелем, но с меньшей ценой. В зависимости от химического состава меняется устойчивость сплава титана к высоким температурам.
  3. Конструкционные — высокопрочные соединения, которые легко поддаются обработке благодаря высокому показателю пластичности. Из этих сплавов изготавливаются детали, которые устанавливаются в оборудовании, работающим с большими нагрузками.

При производстве титановых сплавов используется официальная маркировка, которая указывает на то, с какими металлами он соединён.

Титан в ювелирном искусстве


Брошь Wallace Chan из титана с рубинами, белыми и желтыми бриллиантами, розовыми сапфирами и цаворит гранатов В ювелирном деле титан изначально стали использовать для изготовления обручальных колец, украшений для пирсинга и мужских аксессуаров. Его обработка является довольно сложной и затратной, требует определённых знаний и навыков у мастера, поэтому созданием украшений из титана занимается далеко не каждый ювелир.

Но есть и те, кто достиг высшего мастерства в обработке этого металла. Например, китайский ювелир Уоллес Чан изготавливает из титана настоящие произведения искусства в виде драгоценных цветов, насекомых или рыб. Почему титан? Узнайте о 6 преимуществах этого эффектного металла в статье.

У титана есть одно интересное свойство: при определённом окислении, нагреве или смешивании с другими металлами он может менять свой цвет. В чистом виде это серый металл, но после обработки он может приобрести зелёный, синий, лиловый и даже красный оттенок. Ювелирные дома пользуются той особенностью в создании своих коллекций. Среди именитых брендов-поклонников титана значатся Chopard, Suzanne Syz, Glenn Spiro, Faberge, de Grisogono и другие.

Реклама — Продолжение ниже

По цветовой палитре с титаном может сравниться разве что золото, которое может быть самых разных оттенков и даже цветов, а также серебро, если используется цветное родиевое покрытие. Во втором случае возможно добиться любых цветов радуги.

Свойства и применение титановых сплавов

Титановые сплавы лишены основных недостатков чистого металла. При добавлении сторонних материалов изменяются его характеристики. Ключевые свойства титановых сплавов:

  • устойчивость к коррозийным процессам;
  • малая плотность;
  • большая удельная прочность.

Также сплавы более устойчивы к воздействию высоких температур. Благодаря повышенной защите от воздействия кислот и щелочей сплавы на основе этого материала получили популярность в химической промышленности и медицине. Их используют в строительстве, изготовлении оборудования, машин, самолётов, ракет и кораблей.

Титан и соединения на его основе распространены в различных направлениях промышленности. Этот металл обладает уникальными характеристиками, которые выделяют его на фоне других материалов. Из-за сложностей получения чистого металла цена на него достаточно высока.

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector