Сплавы металлов

Слесарное дело

§ 1. Физические и химические свойства металлов и сплавов

В зависимости от назначения изготовляемых изделий металлы и сплавы должны обладать определенными свойствами. Чтобы судить о том, будет ли данный металл или сплав пригоден для изготовления той или иной детали, нужно знать, какие свойства он имеет.

Свойства металла разделяют на физические, химические, механические и технологические.

К физическим свойствам относятся: удельный вес, температура плавления (плавкость), тепловое расширение, электропроводность, электросопротивление, теплопроводность, теплоемкость, способность намагничиваться и др.

Удельным весом металла или сплава называется вес 1 см3 его, выраженного в граммах.

Наименьший удельный вес из всех металлов имеет литий (0,53 Г/см3), магний (1,74 Г/см3), цезий (1,83 Г/см3) и алюминий (2,7 Г/см3).

Тепловое расширение — это способность металлов и сплавов расширяться, т. е. изменять объем и линейные размеры при нагревании.

Способность металла изменять объем и линейные размеры в процессе нагревания и охлаждения нужно учитывать при конструировании и изготовлении точных измерительных инструментов, при горячей штамповке металлов, застывании отливок и во многих других случаях.

Увеличение (приращение) единицы объема металла при повышении его температуры на 1°С называется коэффициентом объемного расширения.

Увеличение (приращение) единицы длины металла при повышении его температуры на 1°С называется коэффициентом линейного расширения.

Температурой плавления называется температура, при которой металл при нагревании переходит из твердого состояния в жидкое. Каждый металл в чистом виде имеет свою определенную температуру плавления. В зависимости от температуры плавления металлы и сплавы делятся на тугоплавкие, обладающие высокой температурой плавления, и легкоплавкие, имеющие низкую температуру плавления.

Температуру плавления металлов учитывают при плавке металлов, изготовлении отливок и нагревающихся в работе деталей машин (например, подшипников скольжения и др.), при паянии, лужении, сварке.

Электропроводностью называется способность металлов и сплавов проводить электрический ток. Сплавы, как правило, обладают меньшей электропроводностью, чем чистые металлы.

Электросопротивлением называется способность металлов сопротивляться прохождению через них электрического тока, характеризуется удельным сопротивлением в омах, показывающим величину сопротивления прохождению тока по проводнику длиной 1 м и сечением 1 мм2.

Теплопроводность — свойство металла проводить тепло. Лучшие проводники электрического тока являются вместе с тем и лучшими проводниками тепла. Теплопроводность металлов и сплавов измеряется количеством тепла, которое проходит по металлическому стержню сечением 1 см2 за одну минуту.

Удельная теплоемкость — это количество тепла, необходимое для повышения температуры 1 кг металла на 1°С.

Некоторые металлы и сплавы обладают магнитными свойствами. Способность металла намагничиваться оценивается величиной, называемой магнитной проницаемостью. Магнитная проницаемость воздуха принята за единицу, а у железа она составляет 2000—3000 единиц. У меди и алюминия магнитная проницаемость близка к единице.

К химическим свойствам металлов и их сплавам относятся окисляемость, растворяемость и коррозионная стойкость. Особенно важна коррозионная стойкость для деталей, приборов и машин, работающих в агрессивных средах (кислоты, щелочи, растворы солей и др.).

Коррозии, т. е. разрушению в результате действия внешней среды — воздуха, влаги, химических веществ и т. д.,— подвержено в большей или меньшей степени большинство металлов и сплавов, кроме так называемых благородных металлов (золото, платина и некоторые другие). Виды коррозии и меры борьбы с ней изложены в главе VIII.

Физические свойства металлов

Среди основных общих физических свойств металлов можно выделить:

  • Плавление.
  • Плотность.
  • Теплопроводность.
  • Тепловое расширение.
  • Электропроводность.

Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).

Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.

Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.

Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.

3.2. Характеристика сплавов, применяемых в ортопедической стоматологии

В настоящее время в стоматологии используется свыше 500 сплавов.

Международными стандартами (ISO, 1989) все сплавы металлов разделены на группы.

1. Сплавы благородных металлов на основе золота.

2. Сплавы благородных металлов, содержащих 25—50% золота или плати или других драгоценных металлов.

3. Сплавы неблагородных металлов.

4. Сплавы для металлокерамических конструкций:

─   с высоким содержанием золота (>75%);

─   с высоким содержанием благородных металлов (золота и платины или золота и палладия — >75%);

─   на основе палладия (более 50%);

─   на основе неблагородных металлов:

  • кобальта (+ хром >25%, молибден >2%),
  • никеля (+ хром >11%, молибден >2%).

Более упрощенно выглядит классическое подразделение на благородные и неблагородные сплавы.

В специальной литературе до последнего времени встречается лексическая подмена двух терминов — благородный металл и драгоценный металл, которые не являются синонимами: драгоценный указывает на стоимость металла, а благородный — относится к его химическим свойствам. Поэтому элементы золото и платина являются как благородными, так и драгоценными, палладий – благородный, но намного дешевле. Серебро завоевало место в классификации драгоценных металлов, но не является благородным металлом.

Кроме того, применяемые в ортопедической стоматологии сплавы можно классифицировать по другим признакам:

─   назначению (для съемных, металлокерамических, металлополимерных протезов);

─   количеству компонентов сплава;

─   физической природе компонентов сплава;

─   температуре плавления;

─   технологии переработки и т.д.

Обобщая изложенное выше о металлах и сплавах металлов, нужно еще раз подчеркнуть основные общие требования, предъявляемые к сплавам металлов, применяемым в клинике ортопедической стоматологии:

─   биологическая индифферентность и антикоррозионная стойкость к воздействию кислот и щелочей в небольших концентрациях;

─   высокие механические свойства (пластичность, упругость, твердость, высокое сопротивление износу и др.);

─   наличие набора определенных физических (невысокой температуры плавления, минимальной усадки, небольшой плотности и т.д.) и технологических (ковкости, текучести при литье и др.) свойств, обусловленных конкретным назначением.

Металлический каркас — это основа зубного протеза, которая должна полностью противостоять жевательным нагрузкам. Кроме того, он должен перераспределять и дозировать нагрузку, обладать определенными деформационными свойствами и не менять своих первоначальных свойств в течение длительного времени функционирования зубного протеза. То есть, кроме общих требований, к сплавам предъявляются и специфические требования.

Если сплав металлов предназначен для облицовывания керамикой (см. гл. 4), он должен отвечать следующим специфическим требованиям:

─   быть способным к сцеплению с фарфором (см. табл. 31);

─   температура плавления сплава должна быть выше температуры обжига фарфора;

─   коэффициенты термического расширения (КТР) сплава и фарфора должны быть сходными.

Особенно важно соответствие коэффициентов термического расширения двух материалов, что предупреждает возникновение силовых напряжений в фарфоре, которые могут привести к отколу или трещине покрытия. В среднем коэффициент термического расширения у всех типов сплавов, которые используются для облицовывания керамикой, колеблется от 13,8·10-6°С-1 до 14,8·10-6°С-1

Коэффициент термического расширения керамической массы можно менять, вводя определенные добавки. Так, фирма «Дентсплай» (США) запатентовала методику введения лейцита в керамическую массу, которая позволяет изменять коэффициент термического расширения от 12,5·10-6°С-1 до 16·10-6°С-1

Сочетание высоких прочностных свойств литого металлического каркаса зубного протеза и внешнего вида облицовки (см. с. 99), достаточно точно имитирующей внешний вид натуральных зубов, позволяет создать эффективные и эстетичные зубные протезы.

Как указывалось выше, применяющиеся в ортопедической стоматологии сплавы делятся на две основные группы — благородные и неблагородные.

Сплавы на основе благородных металлов подразделяются на:

─   золотые;

─   золото-палладиевые;

─   серебряно-палладиевые.

Сплавы металлов благородных групп имеют лучшие литейные свойства и коррозионную стойкость, однако по прочности уступают сплавам неблагородных металлов.

Сплавы на основе неблагородных металлов включают:

─   хромоникелевую (нержавеющую) сталь;

─   кобальтохромовый сплав;

─   никелехромовый сплав;

─   кобальтохромомолибденовый сплав;

─   сплавы титана;

Цинковые сплавы

Сплавы на основе цинка отличаются низкими температурами плавления, стойкостью к коррозии и отличной обрабатываемостью. Они применяются в машиностроении, производстве вычислительной и бытовой техники, в издательском деле. Хорошие антифрикционные свойства позволяют использовать цинковые сплавы для вкладышей подшипников.

Титан не самый доступный металл, он сложен в производстве и тяжело обрабатывается. Эти недостатки искупаются его уникальными свойствами титановых сплавов: высокой прочностью, малым удельным весом, стойкостью к высоким температурам и агрессивным средам. Эти материалы плохо поддаются механической обработке, но зато их свойства можно улучшить с помощью термической обработки.

Легирование алюминием и небольшими количествами других металлов позволяет повысить прочность и жаростойкость. Для улучшения износостойкости в материал добавляют азот или цементируют его.

Область применения титановых сплавов

Металлические сплавы на основе титана используются в следующих областях:

    • аэрокосмическая;
  1. химическая;
  2. атомная;
  3. криогенная;
  4. судостроительная;
  5. протезирование.

Металлы в природе и способы их добычи

В природе металлы находятся как в свободном состоянии (Си, Au, Ag, Hg, Pt), так и в виде различных соединений – оксидов, сульфидов, карбонатов, сульфатов, фосфатов, хлоридов, нитратов и других соединений. При извлечении их из руд и минералов используют различные пути восстановления. На практике те соединения и минералы имеют ценность, из которых промышленность просто и без больших затрат может получить чистый металл. Для получения железа из железной руды используется углерод. Восстановителями могут быть водород, алюминий, кальций, натрий, которые имеют большую способность присоединять кислород. Из сульфидов получение железа проходит в два этапа: сначала получают сульфат, а потом выжигают и переводят в оксиды, затем полученный оксид восстанавливают по технологии получения из оксидов. Из карбонатов сначала раскладывают карбонат при нагревании. Аналогичными действиями могут быть получены различные виды железа из разных природных соединений. Методом электролиза добываются активные металлы, щелочные, щелочноземельные, алюминий, магний и др. Последние производят при электролизе расплавов (расплавленных солей). При пропускании постоянного электрического тока ионы выделяются на катоде. Трудноплавкие технологические свойства металлов используют для получения их в виде порошка или губчатом состоянии с последующим прессованием при высокой температуре.

Магний, титан и их сплавы

Магний неустойчив к коррозии, зато не существует легче металла, используемого для технических нужд. В основном его добавляют в сплавы с другими материалами: цинком, марганцем, алюминием, которые прекрасно режутся и являются достаточно прочными. Из сплавов с легким металлом магнием изготавливают корпусы фотоаппаратов, различных приборов и двигателей. Титан нашел свое применение в ракетной отрасли, а также машиностроении для химической промышленности. Титаносодержащие сплавы имеют небольшую плотность, прекрасные механические свойства и стойкость к коррозии. Они хорошо поддаются обработке давлением.

Какие виды встречаются?

Свойства металлов во многом зависят от того, к какому виду тот или иной ингредиент относится. В этом ракурсе стоит выделить черные и цветные компоненты.

Чермет

Данная группа считается самой распространенной и востребованной в объемном ракурсе. Свое название они получили благодаря своему цвету – темному. При этом отличительной особенностью черных руд считается низкая стоимость.

В свою очередь, классифицируется на:

  • железные – сюда стоит отнести железосодержащие материалы и основы, а также никелевые и кобальтовые сплавы;
  • тугоплавкие основания для сплавов (имеют температуру плавления равную или превышающую 1600 градусов Цельсия, что является достаточно высоким показателем);
  • низкопрочностные редкоземельные элементы, такие как церий, неодим и другие (активно используются в производстве микроэлектроники).

Цветмет

Принято считать, что эта группа элементов отличается меньшими прочностными характеристиками, температурой плавления, устойчивостью к механическим нагрузкам, но более солидной стоимостью. Понятно, что по всем этим позициям встречаются исключения.

Цветные ранжируют на следующие категории:

  1. Легкие – литий, натрий и так далее. Они характеризуются небольшой плотностью – до 5 тонн на метр кубический. Это всего в 5 раз больше воды.
  2. Тяжелые – свинец, серебро, золото. Их плотность в разы выше легких.
  3. Благородные – те же золото и серебро, а также платина, плутоний.

Также поделить «цветные» разновидности можно на тугоплавкие и легкоплавкие.

Строение металлов и их физические свойства

На механические свойства металлов влияют особенности их внутренней структуры в твердом состоянии. Металлическая решетка имеет такую особенность, что в ее узлах имеются молекулярные частицы, то есть существует равновесие. Валентные электроны находятся в относительно свободном состоянии и не закреплены строго к каждому атому, образуя так называемый электронный газ. То есть, кристаллическая решетка состоит из положительных ионов, а промежутки между ионами заполняются электронами. При наличии разницы температур или под воздействием внешней разности потенциалов эти электроны легко перемещаются и проводят теплоту и электрический ток без смещения материальных частиц. В парообразном состоянии механические свойства металлов способствуют проведению электрического тока только в ионизированном виде. Характерно то, что при повышении температуры электропроводность снижается благодаря тому, что растет их объемное сопротивление. При нагревании или (даже при воздействии фотонов) энергия электронов возрастает, вследствие чего они могут даже легко излучаться (появление катодных лучей и фотоэлектронной эмиссии, используется в радиотехнике, в электронных трубках и измерении интенсивности света с помощью фотоэлементов). Таким образом, металлическая решетка – это фактически ионная решетка, в вершинах которой находятся одноименные положительные ионы, взаимное отталкивание которых компенсируется не противоположными заряженными анионами, а совместным усилиям свободных электронов.

Классификация

Металлурги классифицируют сплавы металлов по нескольким критериям:

  1. метод изготовления:
    • литые;
  2. порошковые;
  3. технология производства:
    • литейные;
  4. деформируемые;
  5. порошковые;
  6. однородность структуры:

Виды сплавов по их основе

вид металла – основы:

  • черные (железо);

цветные (цветные металлы);
редких металлов (радиоактивные элементы);
количество компонентов:

  • двойные;

тройные;
и так далее;
физико-химические свойства:

  • тугоплавкие;

легкоплавкие;
высокопрочные;
жаропрочные;
твердые;
антифрикционные;
коррозионностойкие и др.;
предназначение:

  • конструкционные;

инструментальные;
специальные.

Металлы и сплавы на их основе имеют различные физико-химические характеристики.

Металл, имеющий наибольшую массовую долю, называют основой.

О металлах в природе

В русский язык слово «металл» пришло из немецкого. С XVI века оно встречается в книгах, правда, достаточно редко. В дальнейшем, в эпоху Петра I, его стали употреблять более часто, причем, тогда слово имело обобщающее значение «руда, минерал, металл». И только в период деятельности М.В. Ломоносова эти понятия были разграничены.

В природе металлы встречаются в чистом виде достаточно редко. В основном, они входят в состав различных руд, а также образуют всевозможные соединения, такие как сульфиды, оксиды, карбонаты и другие

Для того чтобы получить чистые металлы, а это очень важно для их применения в дальнейшем, нужно их выделить, а затем очистить. При необходимости, металлы легируют — добавляют специальные примеси, с целью изменения их свойств

В настоящее время есть разделение на руды черных металлов, которые включают в свой состав железо, и цветных. К драгоценным или благородным металлам относят золото, платину и серебро.

Металлы есть даже в организме человека. Кальций, натрий, магний, медь, железо — вот перечень этих веществ, которые содержатся в наибольшем количестве.

Медь и сплавы с медью

В чистом виде имеет розовато-красный цвет, маленькое удельное сопротивление, небольшую плотность, хорошую теплопроводность, отличную пластичность, обладает стойкостью к коррозии. Находит широкое применение как проводник электрического тока. Для технических нужд используют два вида сплавов из меди: латуни (медь с цинком) и бронзы (медь с алюминием, оловом, никелем и другими металлами). Латунь используется для изготовления листов, лент, труб, проволоки, арматуры, втулок, подшипников. Из бронзы изготавливают плоские и круглые пружины, мембраны, разную арматуру, червячные пары.

Признаки металлов

Различают следующие основные механические свойства:

  • Твердость – определяет возможность одного материала противодействовать проникновению другого, более твердого.
  • Усталость – количество, а также время циклических воздействий, которое может выдержать материал без изменения целостности.
  • Прочность. Заключается в следующем: если приложить динамическую, статическую или знакопеременную нагрузку, то это не приведет к изменению формы, строения и размеров, нарушению внутренней и наружной целостности металла.
  • Пластичность – это способность удерживать целостность и полученную форму при деформации.
  • Упругость – это деформация без нарушения целостности под воздействием определенных сил, а также после избавления от нагрузки возможность к возращению первоначальной формы.
  • Стойкость к трещинам – под влиянием внешних сил в материале они не образуются, а также сохраняется наружная целостность.
  • Износостойкость – способность сохранять наружную и внутреннюю целостность при продолжительном трении.
  • Вязкость – сохранение целостности при увеличивающихся физических воздействиях.
  • Жаростойкость – противостояние изменению размера, формы и разрушению при воздействии высоких температур.

Титан

Титан является высокопрочным материалом, который пользуется широким спросом во многих отраслях. Наиболее распространенной областью применения является авиация. Всему виной удачное сочетание малой массы и высокой прочности. Также свойствами титана является большая удельная прочность, стойкость к физическим воздействиям, температурам и коррозии.

Один из наиболее прочных элементов. В природных условиях он является слабым радиоактивным металлом. Он может встречаться в свободном состоянии, весьма тяжелый и широко распространяется повсеместно благодаря своим парамагнитным свойствам. Уран гибок, имеет высокую податливость ковке и относительную пластичность.

Бериллий

А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.

Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.

Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.

Сплавы против металлов

Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.

Чем выше прочность сплава — тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.

А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.

К металлам относят вещества, которые обладают специфическими, характерными для них свойствами. Учитывают при этом высокую пластичность и ковкость, а также электропроводность и еще целый ряд параметров. Какой из них самый прочный металл в мире, можно узнать из приведенных ниже данных.

Типы металлов и сплавов

Класс черных металлов включает два подвида соединений в виде стали и чугуна. Стали могут быть углеродистыми или легированными, а чугун – составом обычного, легированного типа либо ферросплавом. В таких сплавах основным компонентом является железо.

Категория цветных металлов состоит из нескольких групп:

  • благородных металлов (платины, золота, серебра);
  • редких металлов (циркония, вольфрама, молибдена, титана);
  • легких металлов (магния и алюминия);
  • тяжелых металлов (цинка, свинца, олова, ртути, меди);

Металл в виде меди также имеет два следующих подвида:

  • бронза;
  • латунь.

Одни из подвидов металлов нашли широкое применение в промышленном производстве, другие типы, обретшие репутацию редких, менее доступны для производственной сферы.

Различные виды черных сплавов получили значительное распространение в области изготовления металлопроката. Они обладают отличными рабочими свойствами, поэтому на рынке всегда востребованы.

Не менее популярно и изготовление деталей из алюминия. Алюминиевая продукция нашла применение в ряде промышленных и других народнохозяйственных сфер, включающих машиностроение, пищевое и химическое производство, аэрокосмическую отрасль и медицину.

Определение твердости металла

Твердостью металла является его способность противостоять или осуществлять сопротивление телу, которое намного тверже.

Твердость проверяют методами вдавливания в исследуемый материал шариков определенных размеров или алмазной пирамиды. Твердость определяют по трем показателям, а именно по Бринеллю, по Роквеллу и по Виккерсу.

Твердость по Бринеллю определяется в результате вдавливания стального шарика, который имеет диаметр два с половиной миллиметра, или пять или десять миллиметров.

Для определения твердости по Роквеллу вдавливается или стальной шарик, который имеет диаметр 1,58 мм, или алмазный конус, который имеет угол на своей вершине 120 °. Различают несколько значений твердости, а именно очень твердую, мягкую сталь и закаленную сталь. Для первого вида твердости используют вдавливания алмазного конуса, для второго применяют стальной шарик, а для последнего вида принимают алмазный или твердосплавный конус. Система Роквелла в результате неглубокого погружения алмазного конуса в исследуемый материал позволяет исследовать металл более точно, чем система Бринелля.

Что касается определения твердости по системе Виккерса, то при его методике используется алмазная пирамида, которая имеет правильную четырехгранную форму. После того, как подвергли воздействию металл со стороны пирамиды, то есть ее погрузили в металл на определенную величину, осуществляют расчеты, отталкиваясь от величины диагоналей вмятины в металле. Там даже разработаны специальные таблицы. Этот метод применяют для измерения твердости металлических деталей, имеющих небольшое поперечное сечение, а также для поверхностных слоев, имеющих большую твердость и малую тонкость.

Основные виды сплавов

Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.

Сталь — это вещество на основе железа, содержащее не более 2,4% углерода, применяется для изготовления деталей и корпусов промышленных установок и бытовой техники, водного, наземного и воздушного транспорта, инструментов и приспособлений. Стали отличаются широчайшим диапазоном свойств. Общие из них — прочность и упругость. Индивидуальные характеристики отдельных марок стали определяются составом легирующих присадок, вводимых при выплавке. В качестве присадок используется половина таблицы Менделеева, как металлы , так и неметаллы. Самые распространенные из них — хром, ванадий, никель, бор, марганец, фосфор.

Легированная сталь

Если содержание углерода более 2,4% , такое вещество называют чугуном. Чугуны более хрупкие, чем сталь. Они применяются там, где нужно выдерживать большие статические нагрузки при малых динамических. Чугуны используются при производстве станин больших станков и технологического оборудования, оснований для рабочих столов, при отливке оград, решеток и предметов декора. В XIX и в начале XX века чугун широко применялся в строительных конструкциях. До наших дней в Англии сохранились мосты из чугуна.

Чугунные радиаторы

Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.

Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.

Желтая латунь

Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.

Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.

Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.

Технологические свойства металлов

Технологические свойства металлов и сплавов важны в первую очередь при их производстве, так как от них зависит способность подвергаться различным видам обработки с целью создания разнообразных изделий.

Среди основных технологических свойств можно выделить:

  • Ковкость.
  • Текучесть.
  • Свариваемость.
  • Прокаливаемость.
  • Обработку резанием.

Под ковкостью понимается способность металла менять форму в нагретом и холодном состояниях. Ковкость метала, была открыта еще в глубокой древности, так кузнецы, занимающиеся обработкой металлических изделий, превращением их в мечи или орала (в зависимости от потребности) на протяжении многих веков и исторических эпох были одной из самых уважаемых и востребованных профессий.

Способность двух металлических сплавов при нагревании соединяться друг с другом называют свариваемостью.

Текучесть металла тоже очень важна, она определяет способность расплавленного метала растекаться по заготовленной форме.

Свойство металла закаливаться называется прокаливаемостью.

Вольфрам

Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).

Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых — Хуана Хосе и Фаусто д’Эльхуяра — к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.

Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.

Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности — для изготовления ракетных сопел.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий

Adblock
detector