Газовая сварка и резка металлов

Назначение и область применения

Применение газового сварочного аппарата позволяет проводить следующие операции:

  • сварку различных деталей;
  • паяние (в том числе ремонт поврежденных изделий);
  • наплавку;
  • резание листового проката и труб на отдельные заготовки.

Достоинства газовой сварки позволяют использовать ее в строительстве, промышленном производстве, коммунальном хозяйстве, ремонте автомобилей, при решении бытовых задач на дачах и в загородных домах. Сварка газом способна соединить практически любой материал. Ее применяют при соединении узлов изделий из цветных металлов, тонкостенных труб, элементов сложных конструкций. При правильном подборе условий и припоя возможно сваривание чугуна и наплавление на его поверхность латуни. Соединение и резка металлических элементов позволяет получать требуемый результат хорошего качества.

Наплавка предназначена для нанесения на поверхность основного изделия металла другого типа или структуры. В этом случае обрабатываемая поверхность прогревается до температуры так называемого запотевания. Этим методом восстанавливают изношенные детали, увеличивают размеры, наплавляют материал, обладающий более высокими характеристиками по прочности и изнашиваемости. Применение наплавки увеличивает срок службы деталей, сокращает расход дефицитного материала, снижает стоимость ремонта.

ГОСТы: оборудование для газовой сварки и резки металлов

  • ГОСТ 4.41-85
    Система показателей качества продукции. Машины для термической резки металлов. Номенклатура показателей.
  • ГОСТ 5614-74
    Машины для термической резки металлов. Типы, основные параметры и размеры.
  • ГОСТ 17356-89
    Горелки на газообразном и жидком топливах. Термины и определения.
  • ГОСТ 5.917-71
    Горелки ручные для аргонодуговой сварки типов РГА-150 и РГА-400. Требования к качеству аттестованной продукции.
  • ГОСТ 1077-79
    Горелки однопламенные универсальные для ацетилено-кислородной сварки, пайки и подогрева.
    Типы, основные параметры и размеры и общие технические требования.
  • ГОСТ 29091-91
    Горелки ручные газовоздушные инжекторные. Технические требования и методы испытаний.
  • ГОСТ 5191-79
    Резаки инжекторные для ручной кислородной резки. Типы, основные параметры и общие технические требования.
  • ГОСТ 10796-74
    Резаки ручные воздушно-дуговые. Типы и основные параметры.
  • ГОСТ 8856-72
    Аппаратура для газопламенной обработки. Давление горючих газов.
  • ГОСТ 12221-79
    Аппаратура для плазменно-дуговой резки металлов. Типы и основные параметры.
  • ГОСТ 13861-89
    Редукторы для газопламенной обработки. Общие технические условия.
  • ГОСТ 29090-91
    Материалы, используемые в оборудовании для газовой сварки, резки и аналогичных процессов. Общие требования.
  • ГОСТ 30829-2002
    Генераторы ацетиленовые передвижные. Общие технические условия.
  • ГОСТ Р 50379-92
    Герметичность оборудования и аппаратуры для газовой сварки, резки и аналогичных процессов.
    Допустимые скорости внешней утечки газа и метод их измерения.
  • ГОСТ Р 50402-92
    Устройства предохранительные для горючих газов и кислорода или сжатого воздуха, используемые при
    газовой сварке, резке и аналогичных процессах. Основные понятия, общие технические требования и методы испытаний.
  • ГОСТ Р 50402-2011 Оборудование для газовой сварки, резки и родственных процессов. Устройства
    предохранительные для горючих газов и кислорода или сжатого воздуха. Технические требования и
    испытания.
  • ГОСТ 2405-88
    Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры. Общие технические условия.
  • ГОСТ 9356-75
    Рукава резиновые для газовой сварки и резки металлов. Технические условия.
  • ГОСТ 949-73
    Баллоны стальные малого и среднего объема для газов на Рр≤19,6 МПа
    (200 кгс/см2). Технические условия.
  • ГОСТ 31596-2012 Герметичность оборудования и аппаратуры для газовой сварки, резки и аналогичных процессов. Допустимые скорости внешней утечки газа и метод их измерения.
  • ГОСТ Р 54791-2011 Оборудование для газовой сварки, резки и родственных процессов. Редукторы и расходомеры для газопроводов и газовых баллонов с давлением газа до 300 бар (30 МПа).

ГОСТы: процессы сваркиГОСТы: сварные соединения. Типы, конструктивные элементы и размерыГОСТы: сварочные расходуемые материалыГОСТы: сварочное оборудованиеГОСТы: механическое сварочное оборудованиеГОСТы: безопасность труда, требования безопасности к сварочному оборудованиюГОСТы: неразрушающие методы контроля сварных соединений, качество сваркиГОСТы: методы химического анализа сварочных материаловГОСТы: газовая сварка и резка металлов

.

Сущность процесса газовой сварки и резки

Газовая сварка это — сварка плавлением, при которой для нагрева используется тепло пламени смеси газов, сжигаемой с помощью горелки.

Газовая резка — представляет собой процесс основанный на сгорании (быстром окислении) металла в струе кислорода и удалении этой струей образующихся окислов. 

При газопламенной сварке и резке металлов для нагрева используют газовое пламя получаемое при сгорании горючего газа в смеси с кислородом, в специальных горелках.

В качестве горючих газов применяют ацетилен, водород, природные газы, нефтяной газ, пары бензина, керосина и др. Наибольшее распространение получил ацетиле так как имеет самую высокую температуру по сравнению с пламенем других газов.

При газовой сварке кроме кромок свариваемых деталей расплавляются присадочный материал, который вводится в пламя горелки. После затвердевания жидкого металла образуется сварной шов.

К преимуществам газовой сварки относятся:

  • простота способа;
  • несложность оборудования;
  • отсутствие источника электрической энергии.

К недостаткам газовой сварки относятся:

  • меньшая производительность;
  • сложность механизации,
  • большая зона нагрева и более низкие механические свойства сварных соединений, чем при дуговой сварке.

Газовую сварку используют при изготовлении и ремонте изделий из тонколистовой стали толщиной 1-3 мм, сварке чугуна, алюминия, меди, латуни, наплавке твёрдых сплавов, исправлении дефектов. литья и др.

Достоинства и недостатки

Что такое газовая сварка мы разобрались, это метод сваривания с использованием газа для нагревания металлической поверхности. В результате основа размягчается, образует сварочную ванну. Процесс горения газовой смеси обеспечивает благодаря введению в нее чистого кислорода.

Технология газовой сварки имеет целый ряд преимуществ:

  1. Данный метод сваривания не требует применения специального оборудования, а именно сварочного инвертора или полуавтоматического аппарата.
  2. Все расходные материалы можно приобрести в любом магазине со сварочными приспособлениями, они имеют не высокую стоимость.
  3. Сварка газом может проводиться даже без применения мощного источника энергии.
  4. Технологический процесс выполняется достаточно просто, его смогут выполнить даже сварщики, не имеющие большого опыта.
  5. Наблюдается возможность контролирования режимов сварочного процесса.
  6. Не всегда обязательно использование средств индивидуальной защиты.
  7. Во время применения качественной придаточной проволоки и правильно подобранного пламени можно получить качественные и прочные сварные швы. По этой причине часто используется при соединении комплектующих трубопроводов.
  8. Рабочее изделие достаточно медленно прогревается, именно это позволяет избежать деформирования или пропала, как при использовании полуавтоматической сварки и электродов.

Помимо положительных качеств газовая сварочная технология имеет отрицательные особенности:

  • во время процесса металл прогревается длительное время, это негативно отражается на производительности;
  • область тепла, которая образуется при помощи газовой горелки, имеет большие размеры;
  • достаточно тяжело удерживать тепло, которое создается газовой горелкой. По сравнению с электродуговой технологией оно получается более рассеянным;
  • сварка с применением газовых смесей считается дорогим методом соединения металлов;
  • во время соединения толстых металлических деталей значительно снижается скорость выплавления швов. Это связано с низкой концентрации тепла, которое исходит от газовой горелки;
  • технология сваривания с применением газа плохо поддается автоматизации. Механизировать можно процесс сварки тонкостенных труб, резервуаров, которые выполняется с использованием многопламенной горелки;

ни в коем случае не стоит проводить сваривание внахлест, это может привести к деформированию швов.

Материалы для выполнения сварки с использованием газа

Технологический процесс с применением газовых материалов зависит от ряда причин и факторов. Основным и не изменяемым газом является кислород при технологически чистом виде. Предназначение состоит в активации процессов горения металлических деталей для соединения в последующем времени. Газ транспортируется, содержится под высоким давлением для продолжительной работы вне заправочной станции. Хранение, контакты с техническими маслами недопустимо, а также не рекомендуется использовать кислород под прямыми солнечными лучами.

Получение чистого кислорода происходит из обычного воздуха, для очистки используются специальные устройства. Кислород делится на категории, бывает высший, первый и второй сорта. Работа с материалами невозможна без сопутствующего кислороду газа. При большинстве случаев применяется ацетилен бесцветного типа. Ацетилен производится путем соединения воды с карбидом кальция, при определённых температурных воздействия взрывоопасен.

Ацетилен для сварки

Использование ацетилена обуславливается высокими температурными показателями при сварке соединений, более дешевые аналоги не дают возможности производить качественную работу из-за недостаточной температуры горения.

Проволока и флюс для выполнения сварки

Проволока используется для сварки газа, необходима для восполнения ячеек высвобождаемых соединений. Применение флюса и проволоки дает возможность создавать правильно сформированный шов, с необходимыми характеристиками. Чистота, отсутствие признаков коррозии на материале проволоки дает возможность выполнять качественное изделие, в отдельных случаях возможно использовать кусок того же самого материала, который подвергается сварке. Флюс обеспечивает защиту от окислов, других окружающих установленный метал воздействий.

Сварочный флюс

Пренебрегать использованием флюса для выполнения сварки возможно только при изготовлении материалов из углеродистой стали. Борная кислота, используемая в качестве флюса, наносится на детали из меди, магния или алюминия.

Оборудование для газовой сварки

Кроме используемых газов и баллонов, необходимо наличие других технологических элементов:

  1. Для газовой сварки применяют оборудование, как затвор водяного типа, обеспечивающий защиту от обратной тяги огня. Расположение происходит между емкостью с ацетиленом, газовым соплом.
  2. Редукторы используются для контроля уровня газа на выходе из баллона. Существуют различные модели, обратного или прямого действия. Модификации для работы со сжиженным газом подразумевают наличие рубцов внутри конструкции, что позволяет исключить вымерзание.
  3. Шланги специального типа используются для подачи газа к горелке. Маркировка происходит разным цветом в зависимости от максимального давления.
  4. Горелка необходима для смеси горючей смеси, последующего воспламенения газов. Различные модификации делятся на инжекторные и обычные типы. Также разделение происходит по мощности, необходимой при работе.
  5. Газовая сварка производится на обустроенном столе. Оборудуется столешницей для удобной, продуктивной работы. Аппарат для газовой сварки и резки должен соответствовать параметрам безопасности. Вытяжная вентиляция помогает сварщику, позволяет производить процессы с максимальной скоростью.

Газовая горелка

Оборудование для газовой сварки включает в себя огромный спектр приборов и механизмов. В совокупности оборудование позволяет проводить работы при удаленном от энергетических источников месте. Каждый вид оборудования обустроен под тип используемого газа при грамотном соблюдении техники безопасности.

Техника наложения швов в различных пространственных положениях

Нижнее положение

Сварка в нижнем положении является наиболее простой, контролировать процесс формирования шва в данном случае проще всего. Снижается вероятность непровара и появления других дефектов. По технике выполнения применяют, как правило, спиралеобразные движения конца мундштука автогена. В разогретую сварочную ванну опускают присадку, делают “петлю” и повторяют операцию.  Каждый следующий виток должен перекрывать предыдущий на 1/3 диаметра.

Тонкие листы сваривают встык отбортовкой кромок, т.е. края заготовок подгибаются и свариваются без применения присадочной проволоки. Можно использовать как правый, так и левый способы соединения.

Нахлесточные швы

Выполнять работу следует, по возможности, без перерывов. Если сделали паузу – перед повторным процессом переплавьте закристаллизовавшийся в кратере металл . Сварка производится левым способом с присадочным материалом. В работе с данным типом соединения целесообразнее применять дуговые технологи, как менее затратные и более производительные. Особенно это скажется на больших объемах.

Вертикальное положение

Возможные варианты выполнения вертикальных швов как сверху вниз, так и с подъемом снизу вверх. В первом случае применяется правый способ(применяется при малой толщине металла), во втором методе возможны оба варианта. Требуется определенная сноровка по удержанию сварочной ванны, не допуская ее стекания вниз. Она обеспечивается правильным положением мундштука, а также давлением газового пламени.

При значительной толщине деталей (до 20 мм) заполнение шва металлом следует выполнят двойным валиком. Подготовка кромок в данном случае не требуется, зазор между деталями должен составлять половину от толщины свариваемых заготовок.

Потолочное положение

Требует аккуратности и максимальной сосредоточенности. Перед подачей проволоки разогревают кромки. Когда они начинают плавится, в зон сварочной ванны вводят проволоку. Конец присадки быстро плавится, образуя сварной шов. Удержание металла в сварочной ванне происходит давлением пламени. Варят правым способом в несколько приемов, каждый слой делают небольшим по толщине. Чтобы металл не стекал по прутку, его следует держать ближе к горизонтальной плоскости потолочного шва.

Экономическая составляющая газовой сварки

Нередки случаи, когда инженер технолог делает выбор в пользу газовой сварки, искренне полагая, что, таким образом, он достигнет экономии денежных средств. Но не все так просто. Да, электродуговая сварка потребляет большое количество энергии, но выполнив простые арифметические расчеты можно убедиться, что расходы на электросварку, при том же объеме работ ниже, чем на газовую. Поэтому перед тем как варить газосваркой, имеет подсчитать во сколько обойдется один метр шва.

Слабая концентрация тепла в процессе газовой сварки оказывает отрицательное влияние на ее результативность. Так, при работе с листовой сталью толщиной в 1 мм, средняя скорость сварки составляет 10 метров в час, в то время как при толщине листа 10 мм, скорость упадет до 2 метров в час. Именно поэтому газовую сварку применяют при работе со сталью толщиной до 5 мм. В остальных случаях применяют электросварку.

Ацетилено-кислородная сварка практически не механизируется.  Автоматическая сварка используется при работе с трубами, обладающими тонкой стенкой. Для этого применяют горелки, на которых установлено несколько мундштуков.

ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

2.1. Основные параметры и размеры стационарных машин должны соответствовать указанным в табл. 2.

Таблица 2

Исполнение по конструктивной схеме Наибольший размер обрабатываемых листов (сваренных полотнищ), мм Ширина колеи рельсового пути, мм Диапазон регулирования скорости перемещения резаков, мм/мин Потребляемая мощность*, Вт, не более Масса ходовой части**, кг, не более
ширина длина от до***
Ш 1000 1000 100 800;
1600;
2000;
4000;
6000;
8000;
10000;
12000
120 200
Пк 1000 2000;
4000;
6000;
8000;
12000;
20000;
24000
1600 1000 600
1300 2100 1500 750
2000 2400 1500 900
П 1000 1500 70 800 350
1500 2000 1300 700
2000 2700 1800 920
2500 3300 3400 1230
3200 4000 3600 1900
3500 4500 3600 1960
3600 4500 3600 2000
5000 6500 4400 2600
6500 8000 5800 2900
8000 9500 7100 3500
10000 11500 8900 4200
12000 13600 10500 4800

* Без источников питания технологической оснастки.
** Без массы устанавливаемых на ходовую часть блоков управления.
*** Для машин с лазерной оснасткой верхний диапазон не ограничивается.

(Измененная редакция, Изм. № 4).

Таблица 3

Класс точности машин Предельное отклонение, мм
В +0,10
1 ±0,33
2 ±0,50
3 ±1,00

2.2. В зависимости от точности воспроизведения заданного контура стационарные машины следует изготовлять классов точности, указанных в табл. 3.

Структура условного обозначения стационарных машин приведена на схеме

1 – исполнение по конструктивной схеме; 2 – исполнение по способу резки; 3 – исполнение по системе контурного управления или способу движения; 4 – ширина обрабатываемого листа (сваренных полотнищ) в метрах; 5 – максимальная скорость перемещения резака в метрах в минуту; 6 – класс точности машины; 7- обозначение настоящего стандарта.

(Измененная редакция, Изм. № 1, 2, 3, 4).

2.3. Основные параметры переносных машин должны соответствовать указанным в табл. 4.

Таблица 4

Типоразмер Способ движения Число резаков Наибольшая толщина разрезаемого металла, мм Диапазон регулирования скоростей перемещения резака, мм/мин, не менее Потребляемая мощность, Вт, не более Масса, кг, не более
от до
К-1 Р; Ц; Н; Г 1 65 100 800;
1600
30 15
К-2 Р; Ц; Н; Г 1; 2 100 50 20
К-3 Н 1-3 300 50 100 50
Пл-1 Р; Ц; Н; Г 1 1600;
4000
50* 20*
Пл-2 Н 1 1600;
10000
100* 50

* Без источников питания технологической оснастки.

Условное обозначение переносных машин должно состоять из обозначений типоразмера, способа движения и настоящего стандарта.

(Измененная редакция, Изм. № 1, 2).

2.4. (Исключен, Изм. № 2).

2.5. Стационарные портальные и портально-консольные машины должны быть обеспечены устройствами для автоматического или ручного дистанционного поддержания заданного расстояния резака от поверхности листа, а также системой ручного или автоматического зажигания резака.

2.6. Точность воспроизведения заданного контура стационарными машинами следует проверять сравнением размеров заданной окружности диаметром 500 мм с вычерченными машиной окружностями того же диаметра в двух крайних по ширине обработки положениях суппорта машин. Вычерчивание производят твердосплавной чертилкой (или шариковой ручкой), закрепленной в суппорте вместо резака, на горизонтальном стальном листе (или на листе ватмана, неподвижно закрепленном на гладкой поверхности) при скорости перемещения суппорта 300 мм/мин для кислородных машин и 1000 мм/мин для лазерных и плазменных машин. Ширина линий окружностей, воспроизводимых чертилкой или шариковой ручкой, не должна быть более 0,2 мм.

2.7. Измерение предельных отклонений вычерченных машиной окружностей от заданной следует производить измерительным инструментом с погрешностью не более ± 0,01 мм по четырем диаметрам, смещенным относительно друг друга на (45 ± 0,5)°.

2.6, 2.7. (Измененная редакция, Изм. № 4).

2.8. Портальные машины должны иметь следующие показатели надежности (без источников питания технологической оснастки):

  • 95 %-ный срок службы до первого капитального ремонта – не менее 9 лет;
  • 95 %-ную наработку до отказа – не менее 1100 ч для программных машин и 1200 ч для линейных и фотокопировальных машин.

Показатель надежности обеспечивается при выполнении установленных техническими условиями на конкретную машину и указанных в эксплуатационной документации регламентных работ по техническому обслуживанию машин.

Ацетилен для газовой сварки

Ацетилен – один из самых распространённых газов, применяемых для газовой сварки.
Наибольшее распространение ацетилен получил из-за того, что ацетиленокислородное
газовое пламя имеет наибольшую температуру, по сравнению с другими горючими
газами и газовыми смесями (см. таблицу выше).

Ацетилен образуется при взаимодействии карбида кальция CaC2 с водой. Карбид
кальция способен поглощать влагу из атмосферы и разлагаться под её воздействием.
Поэтому, его хранят в герметичных барабанах из кровельной стали. Вместимость
таких барабанов составляет 100-130кг. Получают карбид кальция при сплавлении
в электропечах кокса и обожжённой извести:

CaO + 3C = CaС2 + CO

Ацетилен С2Н2 представляет собой химическое соединение углерода с водородом.
Для получения ацетилена используют ацетиленовые
генераторы, в которые загружают карбид и воду. Химическое взаимодействие
карбида кальция и воды протекает интенсивно, с большим выделением теплоты Q:

CaC2 + 2H2O = C2H2 + Ca(OH)2 + Q

Из 1кг карбида кальция можно получить до 300л ацетилена. При нормальных условиях
ацетилен бесцветен и обладает резким специфическим запахом. Ацетилен легче воздуха,
его плотность составляет 1,09кг/м3.

Ацетилен взрывоопасен, если он находится в смеси с воздухом и его концентрация
составляет 2,2-81% по объёму. В смеси с кислородом ацетилен взрывоопасен, при
его концентрации 2,8-93% по объёму. Наиболее взрывоопасны ацетиленокислородные
смеси, содержащие 7-13% ацетилена.

При растворении в жидкости взрывоопасность ацетилена существенно снижается.
На практике ацетилен растворяют в ацетоне, 1л которого способен растворить до
20л ацетилена. Об этом мы говорили в статье: “Газовые
баллоны для сварки. Газосварочные баллоны”.

Кроме карбида кальция, источниками ацетилена являются природный газ, нефть
и уголь. Полученный из природного газа, ацетилен называется пиролизным.

Слабые места и нюансы технологии

Если начали с плюсов, будет честным остановиться и на минусах. Недостаток в скорости нагревания металла – она низкая.

Кроме того, рабочий участок при таком методе «распластан» – уж очень большая зона нагревания металла, из-за чего теряется много тепловой энергии. Имеет место и такое неприятное явление как коробление.

Поэтому, если толщина вашего металлического листа больше шести миллиметров, начинайте думать о применении газовой сварки где-нибудь в другом месте. А толстый край лучше варить, к примеру, дуговым способом.

Инжекторная и безинжекторная горелка.

Газовая сварка – не самый дорогой способ сварки, это общеизвестно. Но газ для сварки – ацетилен и кислород, которые любят использовать в качестве сварочной газовой смеси, стоят все-таки дороже, чем электричество.

А если добавить довольно высокие риски взрывов и серьезную пожар опасность, которые мгновенно возникнут при неправильном обращении с горючими жидкостями, газами, кислородными баллонами и элементарным карбидом кальция, энтузиазм немного снижается.

Технология газовой сварки отлично подходит для широкого спектра сварочных работ: от соединения деталей из алюминия и стали до работы по бронзе и чугуну.

Сразу отметим, что газовой сварке по силам практически все металлы, включая такие капризные как медь, свинец или чугун: они варятся легче именно газовой технологией, чем какими-либо другими.

Необходимое оборудование для газосварки

Газосварочное оборудование применяется с целью соединения или резки металлических элементов под действием высокой температуры. Оно предполагает использование разных видов приборов и аксессуаров, в зависимости от вида проводимых работ. Для обработки металла используются несколько компонентов.

Водяной, или жидкостный затвор

Защищает части устройств от обратного удара сварочного пламени. Это может случиться тогда, когда скорость подачи газа меньше скорости возгорания, или в случае засорения каналов мундштука горелки. Таким предохранительным устройством оснащены все генераторы.

Баллоны с газом

Специальные цилиндрические резервуары с вентилями для хранения и транспортировки химического вещества. Определить, какой в них содержится вид, можно по цвету.

Баллоны с газом для сварки

Редуктор

Снижает давление газа или держит его на определенном уровне. Устройство бывает прямого и обратного действия. Это важный элемент газобаллонного оборудования, который определяет работоспособность всей системы. Есть разные виды устройств, среди которых – кислородный редуктор. Он приспособлен к агрессивной среде и имеет голубую маркировку.

Для газовой сварки, как правило, используются простейшие однокамерные редукторы

Газовый шланг

Обеспечивает подачу горючих жидкостей. Он сделан по особой технологии. Это многослойное изделие, выдерживающее агрессивную среду, с внутренним диаметром не больше 16 мм. В зависимости от категории, шланги маркируют красным, желтым и синим цветом.

Газовые рукава

Газовая горелка

Является основной частью сварочного оборудования. Она образует пламя, необходимо для нагревания и плавления металла. По конструкции изделие бывает двух видов: инжекторного и безинжекторного. Газовая горелка работает на разных мощностях. Выбор зависит от количества газа, подаваемого в единицу времени.

Схема устройства газовой горелки

Специальный стол

Повышает удобство работы сварщика, так как выполняет несколько функций:

  • фиксирует рабочие заготовки;
  • хранит вспомогательный инструмент;
  • является контуром заземления.

В конструкции может быть поворотная или статичная столешница.

Схема стола для сварки

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector