Класс точности

Поверка приборов, для чего она нужна

Все измерительные приборы измеряют с некой погрешностью, класс точности говорит лишь о том, в каком диапазоне она находится. Бывают случаи, когда диапазон погрешности незаметно увеличивается, и мы начинаем замечать, что измеритель «по-простому» начинает врать. В таких случаях помогает поверка.

Это процесс измерения эталонной величины в идеальных условиях прибором, обычно проводится метрологической службой или в метрологическом отделе предприятия производителя.

Существует первичная и периодическая, первичную проверку проводят после выпуска изделия и выдают сертификат, периодическую проводят не реже чем раз в год, для ответственных приборов чаще.

Поэтому если вы сомневаетесь в правильности работы устройства, вам следует провести его поверку в ближайшей метрологической службе, потому что измеритель может врать как в меньшую, так и в большую сторону.

Как легко проверить потребление электроэнергии в квартире, можете узнать в нашей статье.

Классы точности

Средства измерений, обобщённая характеристика средств измерений, служащая показателем установленных для них государственными стандартами пределов основных и дополнительных погрешностей и др. параметров, влияющих на точность. Например, для концевых мер длины (См. Меры длины) К. т. характеризуют пределы допускаемых отклонений от номинального размера и влияние изменений температуры, а также допустимую непараллельность рабочих поверхностей и отклонение их от идеальной плоскости. Введение К. т. облегчает стандартизацию средств измерений и их подбор для измерений с требуемой точностью.

Из-за разнообразия измеряемых величин и средств измерений нельзя ввести единый способ выражения пределов допускаемых погрешностей и единые обозначения К. т. Если пределы погрешностей выражены в виде приведенной погрешности (т. е. в процентах от верхнего предела измерений, диапазона измерений или длины шкалы прибора), а также в виде относительной погрешности (т. е. в процентах от действительного значения величины), то К. т. обозначают числом, соответствующим значению погрешности. Например: К. т. 0,1 соответствует погрешность 0,1%. Многие показывающие приборы (амперметры, вольтметры, манометры и др.) формируются по приведённой погрешности, выраженной в процентах от верхнего предела измерений. В этих случаях применяется ряд К. т.: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. При нормировании по относительной погрешности обозначение К. т. заключают в кружок.

Для гирь, мер длины и приборов, для которых предел погрешности выражают в единицах измеряемой величины, К. т. принято обозначать номером (1-й, 2-й и т.д. — в порядке снижения К. т.). При указании конкретного К. т. слово «точность» обычно опускается, например гири 3-го класса. Ряды К. т., их обозначения и соответствующие требования к средствам измерений включаются в стандарты (ГОСТ) на отдельные их виды.

В машиностроении, характеристика точности изготовления изделия (детали, узла, машины или прибора), определяемая значениями Допусков, указанных в стандартах. К. т. могут быть установлены на отдельные геометрические параметры изделий, например на линейные размеры, углы, параметры зубчатых колёс и т.д., и на изделия в целом, например на металлорежущие станки (См. Металлорежущий станок), подшипники качения (См. Подшипник качения) и т.д. К. т. отдельных геометрических параметров являются составной частью стандартных систем допусков и посадок для типовых соединений в машиностроении, например гладких, резьбовых, конических, шлицевых, и, как правило, распространяются на допуски данного геометрического параметра в любых изделиях.

К. т. устанавливаются на некоторые изделия в целом. В этом случае на машину, прибор или узел разрабатывают стандарты, в которых определяют допуски основных эксплуатационных показателей, а также др. свойств изделия, влияющих на точность его работы. Например, К. т. металлорежущего станка определяют отклонения размеров и геометрической формы поверхностей деталей, обработанных на этом станке, а также предельные погрешности базирующих поверхностей станка, предельные погрешности взаимного перемещения рабочих органов станка и т.п.; К. т. подшипников качения — предельные погрешности вращения подшипников, а также точность выполнения их монтажных поверхностей.

К. т. — важная эксплуатационная, технологическая и экономическая характеристика изделия, определяющая степень приближения параметров изделия к их расчетным значениям. От К. т. зависят точность сборки, трудоёмкость и стоимость изготовления, выбор оборудования для обработки и контроля. К. т. может влиять на выбор материала изделия, его конструкцию и др. свойства.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство

Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги

В соответствии с ГОСТ 8.401-80 все средства измерений делятся на классы точности, которые устанавливают в стандартах или технических условиях, содержащих технические требования к СИ, подразделяемым по точности. Классы точности СИ конкретного типа выбирают соответственно из ряда классов точности, регламентированных в стандартах или других НД на СИ рассматриваемого вида. В данных стандартах устанавливают конкретные требования к метрологическим характеристи­кам, отражающим уровень точности СИ этого класса.

Классы точности присваивают средствам измерений при их разработке с учетом результатов государственных приемочных испытаний. Как было указано выше, пределы основной и дополнительной погрешностей следует выражать в форме абсолютных, относительных или приведенных погрешностей в зависимости от характера измерения погрешностей в пределах диапазона измерений конкретного вида СИ.

Пределы допускаемой основной погрешности, выражаемые абсолютной систематической погрешностью, наиболее часто используются для характеристики погрешностей, возникающих по вине схем СИ. Однако их значение можно уменьшить за счет регулировки определенных элементов схем, вариации параметров влияния которых заметно сказывается на так называемых аддитивных и мультипликативных погрешностях.

Обозначение классов точности СИ в документации может осуществляться в форме абсолютных по­грешностей или относительных погрешностей.

При этом классы точности следует обозначать в документации прописными буквами латинского алфавита или римскими цифрами. В необходимых случаях к обозначению класса точности буквами латинского алфавита допускается добавлять индексы в виде арабской цифры. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, должны соответствовать буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.

В эксплуатационной документации на СИ конкретного вида, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности данного СИ.

Стандарт ГОСТ 8.401—80 предусматривает определенные обозначения классов точности на СИ. В соответствии с указанным стандартом условные обозначения классов точности наносятся на циферблаты, щитки и корпуса СИ. Они включают числа, прописные буквы латинского алфавита или римские цифры. За исключением технически обоснованных случаев, вместе с условным обозначением класса точности на циферблат, щиток или корпус СИ должны быть нанесены обозначения стандартов или ТУ, устанавливающих технические требования к этим СИ.

На СИ одного и того же класса точности, которые эксплуатируются в различных условиях, следует наносить обозначение условий их эксплуатации, предусмотренные в стандартах или ТУ на СИ.

Какой класс точности должен быть у электросчетчика

Правильный выбор электрического счетчика для квартиры или частного домовладения является достаточно сложной задачей и предполагает учёт очень многих факторов, включая также класс точности.

При замене старого электрического счетчика, который устанавливается в квартиру, частный дом или гараж, очень важно ориентироваться не только на показатели мощности, но и класс точности, который обратно пропорционален указываемому производителем цифровому значению. Таким образом, нужно помнить, что чем меньше цифра обозначения на лицевой панели, тем выше уровень класса

Для квартиры

От показателей класса точности прибора учёта напрямую будут зависеть все колебания таких параметров, как процентное отклонение от настоящего количества всего потребляемого объёма электрической энергии.

Бытовое применение такого прибора в квартирных условиях предполагает приемлемый средний уровень класса точности в пределах двух процентов.

Например, реальное потребление электроэнергии в 100кВт предполагает наличие показателей на уровне от 98кВт до 102кВт. Чем меньшая цифра, указываемая с сопроводительной технической документации, обозначает класс точности, тем меньше будет погрешность. Следует отметить, что вариант электрических счётчиков с максимальной точностью отображения погрешностей, как правило, выше по стоимости, чем другие модели.

С целью правильного определения основных показателей квартирного счётчика при выборе модели очень важно получить разъяснения у специалистов организации, занимающейся энергетическим снабжением данного жилого помещения. Чаще всего, все нюансы обязательно прописываются в договоре, который заключается при поставке электрической энергии между организацией и потребителем

Важно помнить, что в соответствии с Российским законодательством, в договорах, заключаемых между потребителями и сбытовой организацией, обозначается только нижний уровень класса точности. В выборе верхних показателей, потребители электроэнергии на законодательном уровне не ограничиваются

В любых жилых многоквартирных домах в обязательном порядке устанавливаются вводные общедомовые приборы учёта электроэнергии с классом точности единица или выше.

Все общедомовые электрические счетчики с классом 2.0 подлежат замене при выходе из строя или в процессе выполнения очередной плановой поверки.

Для частного дома

Прежде чем приступить к самостоятельному выбору определенной модели прибора учёта расходуемого электричества, требуется уточнить основные технические характеристики устройства, а также выяснить все условия энергоснабжения частного домовладения.

При отсутствии необходимых данных в сопроводительной документации, целесообразно привлечь специалистов, которые помогут уточнить тип напряжения, а также учтут количество подключаемых бытовых приборов и энергозависимой техники.

Желательно заблаговременно позаботится о составлении грамотной схемы электрической проводки в частном доме.

Для бытового потребления используются электросчетчики, обладающие точностью измерений в 2.5% или более. Именно такие пределы установлены для приборов учёта индукционного или электромеханического типа. Для наиболее точных электронных и цифровых моделей характерным является измерение потребляемой электрической энергии с уровнем погрешности – 1.0 или 1.5. Бытовые модели счетчиков, имеющие более высокие показатели класса точности, в настоящее время не производятся.

Для установки в условиях частного дома, безусловно, наилучшим вариантом являются приборы, обладающие классом точности на уровне 2.0% и имеющие функцию подсчёта электроэнергии в зависимости от ночного и дневного режима.

Определение класса точности.

Для того, чтобы пользоваться качественным оборудованием для измерений различных величин необходимо знать погрешность, с какой проводит измерения именно это устройство. Технические характеристики любого измерительного прибора включают в себя следующие показатели, которые обычно указывают на шкале:

  • единицу измерения величины, которую определяет устройство;
  • система принципа действия (магнитоэлектрическая, электромагнитная, индукционная и другие)
  • класс точности прибора;
  • положение шкалы устройства (горизонтальное, вертикальное или наклонное);
  • напряжение, при котором проводилось испытание изоляции корпуса;
  • заводской номер и год выпуска.
  • род тока, при котором необходимо проводить измерения ( постоянный, переменный).


Одной из характеристик технического измерительного средства является класс точности – величина, определяемая несколькими погрешностями, а именно их пределами. Формула для определения этой характеристики устройства выглядит следующим образом:

γ = ΔXнаиб / Xпр⋅× 100%, где

ΔXнаиб – максимальная абсолютная погрешность измерений;

Xпр – наибольшее значение на шкале прибора.

Класс точности прибора называют еще приведенной погрешностью. По этому показателю все измерительные аппараты делят на восемь классов:

  1. 0,05;
  2. 0,1;
  3. 0,2;
  4. 0,5;

Приборы, имеющие такие группы погрешностей, называют прецизионными, от английского слова «precision», означающего в переводе на русский – точность. Это самые точные устройства и их применяют при проведении лабораторных исследований.

Следующие четыре класса точности:

  1. 1,0;
  2. 1,5;
  3. 2,5;
  4. 4.

Используют в технической промышленности, и они так и называются – технические.

Производители измерительных технических устройств проставляют его класс точности на шкале, если пометки нет – аппарат считается внеклассным, а его погрешность в измерениях больше 4%.

Класс точности приборов является характеристикой точности в отношении самих устройств, однако этот показатель не определяет точность проведенных измерений. К примеру, класс точности амперметров характеризуется границами абсолютной погрешности и не гарантирует , что в эти показания не внесут коррективы такие показатели как действие магнитного поля, частота переменного тока и перепады температур, а также другие внешние раздражители.

Классы точности приборов могут быть проставлены как латинской буквой, так и арабской или римской цифрами. Числовые арабские значения означают, что основным показателем точности является приведенная погрешность и должны учитываться наибольшее и наименьшее значения ряда измерений. Римская цифра при обозначении класса точности говорит о том, что точность прибора определялась по значению относительной погрешности.

Если при маркировке класса точности прибора на шкале указано дробное число ( к примеру –« 0,01/0,02»), то это означает, что приведенная погрешность при максимальной шкале равна ±0,01%, а в начале ±0,01%. Это применимо в высокочастотных электроизмерительных приборах.

Все значения погрешностей любых измерительных приборов нормируются и принятыми стандартами и не должны превышать этих значений. Эти показатели могут иметь различные значения, в зависимости от условий эксплуатации измерительного устройства, однако в целом предельные границы этих погрешностей не должны выходить за рамки нормированного значения. Способы определения норм допускаемых погрешностей и маркировка классов точности приборов устанавливаются ГОСТом.

Как определить класс точности электроизмерительного прибора, формулы расчета

Чтобы определить класс точности, необходимо взглянуть на его корпус или инструкцию пользователя, в ней вы можете увидеть цифру, обведенную в круг, например, ① это означает, что ваш прибор измеряет величину с относительной погрешностью ±1%.

Но что делать если известна относительная погрешность и необходимо рассчитать класс точности, например, амперметра, вольтметра и т.д. Рассмотрим на примере амперметра: известна ∆x=базовая (абсолютная) погрешность 0,025 (см. в инструкции), количество делений х=12

Находим относительную погрешность:

Y= 100×0,025/12=0,208 или 2,08%

(вывод: класс точности – 2,5).

Следует отметить, что погрешность неравномерна на всем диапазоне шкалы, измеряя малую величину вы можете получить наибольшую неточность и с увеличением искомой величины она уменьшается, для примера рассмотрим следующий вариант:

Вольтметр с классом p=±2, верхний предел показаний прибора Xn=80В, число делений x=12

Предел абсолютной допустимой погрешности:

Относительная погрешность одного деления:

Если вам необходимо выполнить более подробный расчет, смотрите ГОСТ 8.401-80 п.3.2.6.

 

Принцип работы

Принцип действия приборов легче показать на какой-нибудь модели. В основу работы аппарата положено аналогово-цифровое преобразование. Принципы можно рассмотреть на примере универсального В7-35.

Преобразователи, которые установлены в приборе, измеряют силу тока, напряжение постоянного и переменного электрического тока, сопротивление и конвертируют все это в нормализованное напряжение или цифровой код, если в устройстве имеется аналого-цифровой преобразователь.

Схема прибора основана на нескольких преобразователях:

  • Преобразователь масштабирования;
  • Низкочастотный аппарат, преобразующий напряжение переменного тока в постоянный;
  • Аналогичный преобразователь постоянного и переменного электрического тока в напряжение;
  • Конвертер сопротивления в напряжение.


Схема вольтметра В7-35

Получая эти параметры, устройство конвертирует их в напряжение, отображаемое по специальной шкале или в электроном виде, если в нем предусмотрено наличие АЦП.

Принцип работы электромагнитного аналогового вольтметра следующий. Создание вращающего момента происходит с помощью силового действия магнитного поля катушки на подвижном постоянном магните, который выполняется в форме плоской лопасти.

Под действием магнитного поля, которое создается током, магнит втягивается в цель катушки и поворачивается на ось, содержащую указательную стрелку.


Схематическое изображение работы стрелочного устройства

Средства измерения в метрологии

Метрология представляет собой науку об измерениях, средствах и методах обеспечения их единства, а также способах достижения необходимой точности.

В связи с этим можно выделить три связанные между собой проблемы, которые включает метрология:

  • реализация измерительных процессов;
  • обеспечение единства данных процессов;
  • методы и средства измерений.

Для проведения метрологических измерений применяются следующие технические средства:

  • меры;
  • измерительные приборы.

Мерами являются средства измерений для воспроизведения заданного размера физической величины (ФВ). Наивысшего порядка точности меры носят название эталонов.

Эталоны обеспечивают воспроизведение и хранение узаконенных единиц физических величин, а также передачу их размера нижестоящим по поверочной схеме средствам измерения (СИ).

Образцовыми средствами измерений являются меры, а также измерительные приборы либо преобразователи, которые были утверждены как образцовые для проведения по ним поверки других СИ.

Рабочими средствами измерений являются применяемые для измерений средства, не связанные с передачей размера единиц.

Эталоны

Наивысшей точности средства измерений (эталоны) делятся на категории:

  • первичный – государственный, международный;
  • вторичный – размер единицы получает непосредственно от первичного для данной единицы;
  • сравнения – для сличения эталонов, непосредственно сличить которые друг с другом невозможно по каким-либо причинам (повышенное/пониженное давление, слишком высокая влажность и др.);
  • исходный – имеет на предприятии, в лаборатории наивысшие метрологические свойства; от него размер единицы передается подчиненным эталонам, а также средствам измерений;
  • рабочий – от него размер единицы передается образцовым средствам измерений, а также наиболее точным рабочим.

Также есть другие категории:

  • эталон-свидетель – является вторичным эталоном, который применяется с целью проверки сохранности государственного либо для замены последнего при его порче или утрате;
  • эталон-копия – вторичный эталон для передачи размера единицы рабочим эталонам.

Это образцовые средства измерений, предназначенные для поверки и градуировки иных СИ. У данных средств измерений погрешность показаний меньше в 2–3 раза, нежели у поверяемого прибора. На образцовые средства измерений выдаются свидетельства, где регистрируется право проведения по ним поверки.

Отличием меры от эталона является то, что она воспроизводит не только единицу физической величины, но также ее дольные и кратные значения. Например, эталонами массы являются килограммовые гири и их копии, а мерами также разновесы (массы других размеров).

В отношении мер существуют различные классы точности, особый из которых – стандартные образцы.

Стандартный образец – это мера в виде вещества. С ее помощью размер единицы величины воспроизводится как свойство либо как состав вещества, из которого выполнен стандартный образец. Данными мерами являются образцовые вещества, воспроизводящие при определенных условиях единицу измерения либо ее дольное (кратное) значение.

Например, постоянные температуры, при которых вещество переходит в другое состояние, – точки плавления (золота – 1063° C, серебра – 960,8° С, серы – 444,6° С), кипения (кислорода – 182,97° С) и т.д.

Измерительные приборы и установки

На производстве для измерения ФВ применяются рабочие средства измерения – измерительные приборы или измерительные установки.

Измерительный прибор представляет собой СИ, которое предназначено для выработки информации по измерению в доступной для наблюдателя форме. Как правило, данное устройство градуировано непосредственно в единицах измеряемой физической величины.

Измерительная установка – это уже комплекс из нескольких приборов, а также вспомогательных комплектующих.

В то же время граница между прибором и установкой является достаточно условной. К примеру, при измерении температуры с помощью термопары и вольтметра возможно оперировать как понятием «термоэлектрическая установка», так и «электрический термометр» (прибор).

Советы по выбору счетчика

Счетчик предназначен для подсчета потребляемой электроэнергии. При этом не все понимают, на что влияет класс точности.

Чем он выше, тем точнее показания, а это значит, что потребитель не переплачивает за электричество.

Для применения в бытовых условиях устанавливают однофазные приборы типа:

  • СОЭ-52, устройство предназначено для замены устаревшего оборудования. Он имеет корпус аналогичный старому прибору. При монтаже не требуется дополнительных затрат на установку.
  • Меркурий 201.5, СЭ 101 и Нева 101-1SO. Применяются для подсчета мощности в однофазной электросети с максимальным током до 60 А. Предназначены для монтажа на DIN рейку.
  • Многотарифные счетчики позволяют производить оплату за электричество по различным расценкам в зависимости от тарифа. К таким приборам относятся Нева МТ 124, СЕ 102М, Энергомера.
  • Для учета в трехфазной сети применяют многотарифные устройства моделей СЭ 303 и Агат 3-3.60.2.

Приведенные выше электросчетчики отвечают актуальным требованиям энергосбытовых компаний. Некоторые из них имеют возможность передачи показаний по линиям связи в автоматическом режиме, а к каждому устройству прилагается паспорт, где прописываются все характеристики.

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector