Подшипниковая сталь ШХ15

Механические свойства стали ШХ15СГ

Механические свойства при 20°С

Состояние поставки

Сечение

(мм)

t испыт.

(°C)

t отпуска

(°C)

sТ | s0,2

(МПа)

sB

(МПа)

d5

(%)

d4

d

d10

y

(%)

KCU

(кДж/м2)

HB

HRC

HRB

HV

HSh

Сортовой прокат. Закалка в масло с 810-840 °С + Отпуск при 150 °С, охлаждение на воздухе

≤25

1960-2350

290-690

61-65

Сортовой прокат. Отжиг при 790-810 °С, охлаждение с печью до 730 °С, от 730 до 650 °С охлаждение со скоростью 10-20 °С/ч, далее на воздухе (изотермический отжиг)

≤50

370-410

590-730

15-25

35-55

≥432

179-217

Механические свойства в зависимости от температуры отпуска

Состояние поставки

Сечение

(мм)

t испыт.

(°C)

t отпуска

(°C)

sТ | s0,2

(МПа)

sB

(МПа)

d5

(%)

d4

d

d10

y

(%)

KCU

(кДж/м2)

HB

HRC

HRB

HV

HSh

Сортовой прокат. Закалка в масло с 820 °С + Отпуск

160

2250-2370

1960-2350

62-65

200

2130-2280

2160-2550

60-62

250

2120-2200

59-61

300

1860-2040

58-59

330

1850-1950

56-57

Химический состав и структура

Рассматриваемая марка стали ШХ15 имеет необычный состав, который и определяет особые эксплуатационные характеристики. Марка относится к низколегированным хромистым сталям. Это определяет то, что в составе большое количество специальных добавок, которые и придают прочность, стойкость и коррозионную стойкость. В состав включаются следующие элементы:

  1. Большая концентрация углерода определяет повышенную твердость структуры. Показатель концентрации углерода составляет 0,95-1%.
  2. Марганец включается в состав практически любой стали. В рассматриваемом случае концентрация 0,2-0,4%.
  3. Кремний повышает прочность и другие характеристики материала. ШХ 15 имеет показатель в диапазоне от 0,17-0,37%.
  4. В большинстве случаев коррозионная стойкость достигается за счет добавления большого количества хрома. ШХ 15 характеризуется невысокой устойчивостью к воздействию агрессивных химических веществ и влаги, так как хрома в составе только 1,35-1,65%.

Микроструктура шх15 после закалки в масле

Небольшое количество хрома определяет то, что он не образует собственные карбиды, остается в твердом растворе и может входить в состав цементита. Структура характеризуется однородностью при небольших карбидах. Именно это свойство приводит к повышению износостойкости.

Подшипниковая сталь для ножей

Подшипниковые сплавы также нередко используются для производства ножей и других бытовых предметов. Чаще всего для производства ножей используется низколегированная хромистая сталь под маркой ШХ15.

Она характеризуется повышенной твердостью, хорошей износостойкостью, устойчивостью к ржавчине. Также стальной сплав характеризуется хорошей устойчивостью к различным температурным обработкам. После термообработки повышается твердость стали, но сохраняется пластичность и вязкость металла. Закалка ножей из подшипниковой стали происходит при температуре 825-855 градусов.

Преимущества и недостатки

Достоинства сплавов:

  • однородную структуру;
  • повышенную выносливость;
  • хорошую податливость;
  • высокая твердость;
  • износостойкость;
  • устойчивость к смятию;
  • возможность создания тонкой кромки при заточке.

Готовые изделия из подшипниковых сплавов служат не одно десятилетие даже при интенсивном использовании.

К недостаткам относят трудную заточку. Подшипниковая сталь ШХ15 хоть и является достаточно универсальной и недорогой, но при ковке мастером требует повышенной внимательности и аккуратности. Особенности заточки лезвия будут сопровождать клинок в течение всего времени эксплуатации.

ШХ15 :: Металлические материалы: классификация и свойства

Сталь ШХ15   ГОСТ 801-78

Массовая доля элементов, %

Углерод

Кремний

Марганец

Хром

Сера

Фосфор

Никель

Медь

Ni+Cu

Не более

0,95-

1,05

0,17-

0,37

0,20-

0,40

1,30-

1,65

0,02

0,027

0,30

0,25

0,50

Ас1

Ас3(Асm)

Аr3(Arcm)

Ar1

Мн

724

900

713

700

210

Режимы термообработки

Временное сопротивление , МПа

Предел текучести , МПа

Относительное удлинение , %

Относительное сужение ,%

Ударная вязкость KCU, Дж/см2

Твердость HRCЭ (НВ, кгс/мм2), не более

Не менее

Отжиг 800 , печь, затем до 650  со скоростью 10-20 град/час, воздух

590-730

370-410

15-25

35-55

44

(179-207)

Закалка 810 , вода до 200 , затем масло. Отпуск 150 , воздух

1960-2350

1670

3-7

61-65

Предел выносливости при n = 106

, МПа

Термообработка

333

НВ 192. Отжиг

804

НВ 616. Закалка 830 . Отпуск 150 , масло

652

Теплостойкость

Температура

Время, ч.

Твердость. HRCЭ

150-160

1

63

Прокаливаемость. (Закалка 850 . Твердость для полос прокаливаемости HRCЭ)

Расстояние от торца, мм

1,5

3

4,5

6

9

12

15

18

24

33

66,5-68,5

63-68

58,5-67,5

51,5-67

40-64

38-54

38-48,5

38-47

33-41,5

28-35,5

Кол- во мартенсита, %

Критическая твердость, HRCЭ

Критический диаметр, мм

В воде

В масле

50

90

57

62

28-60

20-54

9-37

6-30

         Применяемость: шарики диаметром до 150 мм, ролики диаметром до 23 мм, кольца подшипников с толщиной стенки до 14 мм, втулки плунжеров, плунжеры, нагнетательные клапаны, корпуса распылителей, ролики толкателей и другие детали, от которых требуется высокая твердость, износостойкость и контактная прочность.

         Заменитель для сталей: ШХ9, ШХ12, ШХ15СГ.

            Температура ковки:

                   – начала – 1150

                   – конца – 800

Свариваемость: КТС – без ограничений.

         Склонность к отпускной хрупкости – склонна.

         Флокеночувствительность – чувствительна.

         Шлифуемость – хорошая.

Сортамент:

         – горячекатаная круглая – ГОСТ 2590-71

         – горячекатаная квадратная – ГОСТ 2591-71

         – горячекатаная полосовая – ГОСТ 103-76, ГОСТ 4405-75

         – калиброванная круглая – ГОСТ 7417-75

         – круглая со специальной отделкой поверхности – ГОСТ 14955-77

Особенности использования

Расшифровка стали ШХ15 говорит сама за себя, однако стоит добавить, что 15 – это показатель количества хрома в материале, которого там содержится в количестве 1,5%.

При эксплуатации изделий из данной стали в метастабильной среде с высокими нагрузками вполне возможны геометрические изменения размеров детали. После проведения наблюдений за закаленными образцами и их изменений в размерах, а также после проведения рентгенографических исследований люди установили, что для стабилизации такого вещества, как мартенсит, необходима закалка сырья в течение 2-4 часов при температуре в 150 градусов по Цельсию. Если же необходимо стабилизировать мартенсит для дальнейшей эксплуатации вещества в повышенных температурных условиях, то процесс отпуска должен проходить при температурном пороге, который будет превышать рабочую температуру на 50-100 градусов по Цельсию.

Можно отметить, что основная причина, почему после закалки и отпуска сталь изменяет свои геометрические параметры – это влияние остаточного аустенита. Для того чтобы привести наглядный пример, можно представить такое утверждение: 1% аутенсита при превращении в мартенсит будет изменять размер детали на 1•10-4. Для более понятного определения это означает, что изменение размера произойдет на 10 мкм на каждые 100 мм размера.

Химический состав

Сталь ШХ15 имеет необычный химический состав, который определяет её рабочие свойства. Данная марка относится к низколегированным хромистым сплавам, что обусловлено большим количеством базовых добавок, которые и придают те самые прочность и износостойкость. В состав включены такие элементы:

  1. Углерод (0,95-1%) – довольно высокая его концентрация позволяет добиться повышенной твёрдости структуры.
  2. Марганец (0,2-0,4%) – имеется в составе практически всех сталей. Его применяют для удаления из стали кислорода и серы. Также он благоприятно влияет на ковкость и свариваемость сталей.
  3. Кремний (0,17-0,37%) – применяют при выплавке сталей, положительно сказывается на прочности и улучшает эффект других компонентов. В комбинации с марганцем или молибденом кремний обеспечивает более высокую закаливаемость стали.
  4. Хром (1,35-1,65%) – хром обеспечивает устойчивость сплава к ржавлению, но только в том случае, если его содержание в нём превышает 13%. Поэтому ШХ15 характеризуется низкой стойкостью к коррозиям. Небольшое количество хрома определяет то, что он не образует собственные карбиды, остаётся в твёрдом растворе и может входить в состав цементита. Структура характеризуется однородностью при небольших карбидах. Именно это свойство приводит к повышению износостойкости.

Расшифровка

На первый взгляд может показаться, что название сплава «ШХ15» – это простой набор бук. Однако это совсем не так, эти буквы являются символами аббревиатуры и несут смысловую нагрузку. Человек, который хоть немного разбирается в маркировках металлов, может из этого названия извлечь некоторые полезные сведения:

  • Ш – этой буквой согласно ГОСТу маркируются все подшипниковые стали;
  • Х – означает наличие в химическом составе стали хрома;
  • 15 – это процентное содержание того самого хрома (1,5%).

ГОСТ

Государственные стандарты регулируют производственные этапы, характеристики, свойства всех сталей, исключением не является и ШХ15. Вся подробная информация о подшипниковых сталях содержится в ГОСТе 801-78. Тут указан и допустимый предел элементов в химическом составе, и правильность закалки, и правильная маркировка, и применение, и т.д. Также для каждого отдельного изделия, для производства которых применяется ШХ15, имеет свой ГОСТ. Виды поставки материала:

В22 – Сортовой и фасонный прокатГОСТ 2590-2006; ГОСТ 2591-2006;
В23 – Листы и полосыГОСТ 103-2006;
В32 – Сортовой и фасонный прокатГОСТ 14955-77; ГОСТ 7417-75; ГОСТ 801-78;
В62 – Трубы стальные и соединительные части к нимГОСТ 800-78;
В73 – Проволока стальная легированнаяГОСТ 4727-83;

Многослойные покрытия

При многослойной заливке тонкий слой оловянного баббита наносят на подложку из антифрикционного сплава толщиной 0,2—0,5 мм. Позволяя использовать ценные качества оловянных баббитов, этот способ резко сокращает расход олова и вместе с тем увеличивает сопротивление усталости и сопротивляемость заливки ударным нагрузкам.

В качестве подложки применяют свинцовые бронзы, алюминиевые сплавы и бронзы. Наилучшие результаты дают пористые подложки из спеченных сплавов Cu–Al и Сu–Ni (60% Сu, 40% Ni), обеспечивающие прочную связь баббита с вкладышем.

Применяют два способа нанесения баббита. При заливке баббит наносят слоем 0,3—0,4 мм. После обработки толщина баббитового слоя составляет 0,15—0,2 мм.

Технологичнее электролитическое осаждение баббита слоем толщиной 15—20 мкм на поверхности подложки, обработанной начисто. При этом способе обязательно применять пористую подложку, которая, будучи пропитана баббитом, образует антифрикционный подслой, обеспечивающий правильную работу подшипника при местном или общем износе поверхностного баббитового слоя.

Иногда в качестве поверхностного слоя применяют свинцовые баббиты. Для предупреждения коррозии на них наносят электролитический слой In толщиной несколько микрометров, который затем подвергают диффузии посредством нагрева при 150°С в течение 2—3 ч.

Материалы

Важным вопросом для производства является, из какой стали делают обоймы подшипников? Наиболее распространенный материал имеет марку:

  • • ШХ15;
  • • ШХ15СГ;
  • • ШХ20СГ;
  • • ШХ4.

Они отличаются содержанием технологических присадок. В состав входит магний, кремний, углерод, хром в размерах до 2 процентов и примеси серы, фосфора, никеля, меди в очень ограниченном количестве. Твердость приобретается методом термической обработки.

Для изделий, выдерживающих большие нагрузки, необходимо иметь прочную поверхность соприкосновения и пластичную середину. В этом случае используются стали марки:

  • • 15Г1;
  • • 18ХГТ;
  • • 20Х2Н4А.

Плоскости подвергаются цементации. При этом достигается прочность от 59 до 66 HRCэ. Сердцевина остается более мягкой с показателем около 36. Производственный процесс немного отличается от предыдущего.

В промышленности требуются узлы для работы в агрессивных средах. Для производства в этом случае применяются стали марок 95Х18Ш и 110Х18МШД.

В литейных цехах, в агрегатах термической обработке, нужны продукты из термостойкого материала. В России используют 8Х4В9Ф2Ш и 8Х4М4В2Ф1Ш.

Выплавка

Основным способом производства подшипниковых сталей является изготовление их в электродуговых печах. Около 90% сплавов производится именно данным способом. Оставшиеся 10% переплавляются в мартеновских печах. Такие способы производства обусловлены особенностями при переплавке сталей и доступности определенного оборудования.

В мартеновских печах подшипниковые сплавы изготавливаются при помощи активной плавки либо восстановление кремния. Эти два способа позволяют добиться нужных характеристик металла. В случае активной плавки происходит добавление нужных компонентов. К ним относится известняк, руда и остальное. Стоит учитывать, что данная схема делает потенциал кремния в окислительном плане очень высоким. Также ограничивается его восстановление и увеличивается подвижность шлака в жидком состоянии.

Изготовление подшипниковых сплавов по восстановительной технологии предполагает добавление различных компонентов непосредственно в процессе плавки. В таком случае кремнезем насыщает шлаковый расплав во время роста температуры плавления стали. У шлака повышается вязкость, кислород начинает проходить сквозь него в очень медленном режиме. При проведении плавки происходит фиксация процесса, когда начинается восстановление кремния.

Плавка в электродуговых печах происходит по двум основным технологиям:

  • обработка стали синтетическим шлаком, который готовится в ином устройстве;
  • обработка сплавов шлаком, получаемым непосредственно в печи.

Обе технологии допускают использование свежей шихты либо переплавленные материалы. При применении шихты для переплавки понадобится около 4,5% стальных отходов, 20% чугуна и 75% различных отходов черного металла. Готовые металлические сплавы раскисляют при помощи первичного алюминия. При использовании технологии переплавки понадобится 70-100% подшипниковых сплавов. Раскисление таких металлов происходит при помощи кусков алюминия.

Дополнительная обработка стальных сплавов происходит при помощи электроннолучевого, электрошлакового, либо дугового переплава. Благодаря дополнительной обработки из подшипниковых сплавов удаляются различные посторонние добавки, которые являются неметаллическими. Также удаляются разнообразные газы.

Как собирают шариковые подшипники: видео

Процесс выглядит так:

  • • Подготовленные соответствующим образом обоймы вкладываются одна в другую, соприкасаются в единой точке. В результате в стороне, противоположной контакту, образуется пространство, через которое можно ввести шарики.
  • • Количество элементов качения при такой схеме ограничено. Следующим этапом является равномерное распределение их по периметру. При этом внутреннее кольцо автоматически центрируется относительно внешнего.
  • • Снизу и сверху устанавливается специально изготовленные половинки сепаратора. Стандартный продукт делается из углеродистой стали. Но существуют разновидности, когда фиксация происходит за счет латунной или пластиковой детали. Последняя состоит из одной части и просто защелкивается.
  • • На специальном автомате две половины удерживающего устройства соединяются заклепками, сделанными из металла, через заранее подготовленное отверстие.
  • • Изделие промывается и смазывается (литолом, циатимом, графитом или консервирующим составом).
  • • Устанавливаются защитные пыльники. Они могут быть металлическими, пластиковыми или композитными.
  • • Далее, товар маркируется согласно ГОСТам, и упаковывается в коробки.

Сборка опорного изделия заключается в создании сепаратора, удерживающего элементы качения в определенных местах. Края устройства завальцовывают. В реализацию идет в виде трех деталей (верхняя и нижняя шайба, и сам узел).

Для высоких нагрузок необходимо создать больше точек соприкосновения. В классический механизм невозможно поместить дополнительные шарики. Тогда производители делают в дисках технологические выемки, через которые количество мест касания становится максимальным. В дальнейшем происходит классическая склепка сепаратора.

Одним из проверенных поставщиков является . Она реализует продукцию на основе подшипников, произведенных на территории России заводами с идеальной репутацией.

Применение

ШХ15 применяют в подшипниковой отрасли. Из неё изготавливают шарики, предельный размер которых составляет 150 мм, роликов с максимальным размером до 23 мм. Кроме того, из стали марки ШХ15 производят подшипниковые кольца толщина которых не превышает 14 мм.

Во время работы детали подшипника подвергаются большим нагрузкам, распределяемым на малой площади. Более того, эти нагрузки имеют разную полярность, такие нагрузки называют знакопеременными, они могут достигать давления порядка 300 – 500 кг/кв. см. Именно поэтому термообработка этой стали проходит при высоких температурах.

Важно понимать, что такие нагрузки не могут пройти бесследно и рано или поздно на внутренней поверхности колец могут образовываться микротрещины. Появление дефектных участков приводит к росту ударной нагрузки, которая, в свою очередь, приводит к росту дефектных участков в результате подшипник выйдет из строя

В промышленности этот материал применяют уже около 100 лет, кроме подшипниковой отрасли этот материал используют для производства режущего инструмента, в том числе и ножей. Нож, выполненный из стали, обладает большим запасом прочности и способностью длительное время сохранять заточку. Характеристики материала позволяют изготавливать элементарные кухонные ножи.

Cталь ШХ15 механические, технологические, физические свойства. Сталь подшипниковая ШХ15 круг стальной пруток

Справочная информация

Характеристика материала сталь ШХ15

Марка сталисталь ШХ15
Заменитель сталисталь ШХ9, сталь ШХ12, сталь ШХ15СГ
Классификация сталиСталь конструкционная подшипниковая ГОСТ 801-78
ГП “Стальмаш” поставляет подшипниковую сталь в следующих видах металлопродукции:круг ст ШХ15 ГОСТ 2590-2006 круг (пруток) стальной горячекатаныйкруг ст ШХ15 ГОСТ 7417-75 круг (пруток) калиброванный
Применение стали ШХ15шарики диаметром до 150 мм, ролики диаметром до 23 мм, кольца подшипников с толщиной стенки до 14 мм, втулки плунжеров, плунжеры, нагнетательные клапаны, корпуса распылителей, ролики толкателей и другие детали, от которых требуется высокая твердость, износостойкость и контактная прочность.

Химический состав в % материала сталь ШХ15

C SiMn Ni S P Cr Cu
0.95 – 1.050.17 – 0.370.2 – 0.4до   0.3до   0.02до   0.0271.3 – 1.65до   0.25

Температура критических точек материала сталь ШХ15

Ac1 = 724 ,      Ac3(Acm) = 900 ,       Ar3(Arcm) = 713 ,       Ar1 = 700 ,       Mn = 210

Механические свойства при Т=20oС материала ШХ15 .

СортаментРазмерНапр.sвsTd5y KCUТермообр.
ммМПаМПа % %кДж / м2
Сталь  590-730370-4102045440Отжиг 800oC, печь, 15 oC/ч,
    Твердость материала сталь ШХ15   ,       HB 10 -1 = 179 – 207   МПа

Физические свойства материала сталь ШХ15

TE 10- 5a 10 6lrCR 10 9
ГрадМПа1/ГрадВт/(м·град)кг/м3Дж/(кг·град) Ом·м
202.11  7812  
100 11.9 7790 390
200 15.1407750 470
300 15.5 7720 520
400 15.6377680  
500 15.7327640  
TE 10- 5a 10 6lrCR 10 9

Технологические свойства материала сталь ШХ15

  Флокеночувствительность:чувствительна.
  Склонность к отпускной хрупкости:склонна.

Зарубежные аналоги материала сталь ШХ15Внимание!   Указаны как точные, так и ближайшие аналоги

СШАГерманияЯпонияФранцияАнглияЕвросоюзИталияИспанияКитайШвецияБолгарияВенгрияПольшаРумынияЧехияАвстралияЮж.Корея
DIN,WNrJISAFNORBSENUNIUNEGBSSBDSMSZPNSTASCSNASKS

Обозначения:

Механические свойства :
sв– Предел кратковременной прочности ,
sT– Предел пропорциональности (предел текучести для остаточной деформации),
d5– Относительное удлинение при разрыве ,
y– Относительное сужение ,
KCU– Ударная вязкость , [ кДж / м2]
HB– Твердость по Бринеллю ,
Физические свойства :
T– Температура, при которой получены данные свойства ,
E– Модуль упругости первого рода ,
a– Коэффициент температурного (линейного) расширения (диапазон 20o – T ) , [1/Град]
l– Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]
r– Плотность материала , [кг/м3]
C– Удельная теплоемкость материала (диапазон 20o – T ), [Дж/(кг·град)]
R– Удельное электросопротивление,
Свариваемость :
без ограничений– сварка производится без подогрева и без последующей термообработки
ограниченно свариваемая– сварка возможна при подогреве до 100-120 град. и последующей термообработке
трудносвариваемая– для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки – отжиг

Требования к химическому составу

Подшипниковые стали имеют в составе определенные легирующие компоненты:

  • кремний;
  • серу;
  • углерод;
  • марганец;
  • хром;
  • медь;
  • фосфор;
  • никель.

В зависимости от марки стального сплава все эти компоненты содержаться в определенных пропорциях. Если в сплаве ШХ15СГ содержится кремния 0,4-0,65%, а углерода — 0,95-1,05, то в стали ШХ15 кремния — 0,17-0,37%, а показатели углерода находятся в тех же пределах.

Немалое количество углерода, которое содержится в подшипниковых сталях, обеспечивает сплавам хорошую износостойкость в процессе эксплуатации. Также именно углерод влияет на прочность деталей после нагрева. Термообработка способствует стабильности геометрических параметров изделий при эксплуатационной температуре свыше 100 градусов. Хоть термообработка и обеспечивает стабильность, но снижается твердость стальных сплавов.

Марганец и хром, которые добавляются в подшипниковую сталь, обеспечивают сплавам повышение истироустойчивости и твердости.

Такой компонент, как молибден, добавляется в подшипниковые сплавы для обеспечения готовым изделиям долговечности. Несмотря на то, что большинство добавок обязательны, их количество играет очень большую роль. Чрезмерное количество может оказать негативное влияние, нужно соблюдать пропорции при производстве стали.

Компоненты с негативным влиянием

  1. Медь. Данный элемент хоть и увеличивает прочность готовых слов, но при избытке может стать причиной появления трещин и надрывов.
  2. Фосфор. Компонент способен уменьшать прочность на изгиб и делать материал хрупким. Если добавлять вещество в определенном количестве, то повышается восприимчивость стали к нагрузкам динамического характера.
  3. Азот, олово либо мышьяк. Данные компоненты даже при наличии в тысячных долях процента могут стать причиной раскрашивания металла.
  4. Никель. Если сталь имеет избыточные показатели никеля в своём составе, то твёрдость может существенно быть снижена.
  5. Сера. Хоть нет однозначного мнения по данному компоненту, но отечественные производители стали не используют серу выше 0,15%, так как излишки компонента делают деталь склонной к быстрому усталостному разрушению.

Расшифровка стали ХВГ

Марка ХВГ является базовой для аналоговых сталей перлитного класса. Ее химический состав обеспечивается минимальным количеством легирующих элементов (всего 4):

  1. углерод — ± 1,0 %;
  2. хром — 0,9-1,2 %;
  3. кремний — 01-0,4 %;
  4. вольфрам — 0,2-1,6 %.

Остальные элементы — второстепенные по значимости и выдерживаются в такой концентрации:

  • марганец — 0,8-1,1 %;
  • молибден до 0,3 %;
  • никель — до 0,35 %;
  • медь — до 0,3 %.

Так как сталь марки ХВГ относится к высококачественному классу, то содержание вредных примесей фосфора и серы регламентируется до 0,03 % (это минимально возможный предел). Остаточный кислород раскисляется при введении легирующих элементов Si и Mn.

Влияние элементов на свойства

На свойства стали влияет две составляющие:

  • концентрация химических элементов, т. е. химический состав стали;
  • их взаимодействие друг с другом, а также по отношению основного элемента (в данном случае Fe), что определяется термической обработкой.

Вводятся модифицирующие материалы в расплав, чтобы определенным образом заполнить кристаллическую решетку и тем самым определить ее свойства. К таким понятиям относятся:

  • Прочность — любое искажение кристаллической решетки повышает эту характеристику;
  • Увеличение слоя закалки — равномерное распределение температуры;
  • Уменьшение деформаций — укомплектованная кристаллическая решетка;
  • Склонность к трещинообразованию — здесь имеется в виду прочные межкристаллические связи т. е. образование карбидов по границам зерен, также это может быть образование сегрегаций.

Основной элемент повышающий прочность и определяющий сплав как сталь — углерод. Являясь ненамного меньшим, чем молекула Fe по размеру, он размещается в металлической решетке, образуя карбиды. Их форма, расположение и размеры имеют основное значение для характеристик металла при последующей отработке.

Главный легирующий элемент ХВГ — хром. Его атомы небольшие по размеру, уплотняют собой решетку, придавая ей еще большую плотность и стабильность. Особенность атомов хрома образовывать оксиды практически такого же размера, как и сам атом, используются при выплавке сплава со свойствами нержавейки, но это при его содержании выше 10,5 %, а до этого предела он хорошо повышает прокаливаемость.

Для увеличения слоя закалки и уменьшения зерна ХВГ (что увеличивает качество стали) используются и следующие два элемента: молибден и вольфрам. Помимо того, что они образуют еще более прочные карбиды, чем углерод, эти металлы очень тугоплавки и являются центрами кристаллизации, измельчая зерна, что повышает пластичность металла, не меняя его твердости, а также увеличивает прокаливаемый слой.

Легирование кремнием и марганцем (этот элемент не указывается в маркировке ввиду его второстепенного влияния по значимости). Кремний не карбидообразующий элемент, он выталкивает карбиды к границам зерен, таким образом, упрочняя металл. Марганец в данном случае используют для баланса, т. к. он в этой концентрации увеличивает вязкость и пластичность, снижает нежелательные последствия такого повышения прочности.

  • ГОСТы 5950-2000, 2591-2006, 2590-2006 – общие стандарты фасонного проката
  • ГОСТы 8560-78, 8559-75, 7417-75, 5950-2000 – калиброванный пруток
  • ГОСТы 1133-71, 7831-78, 5950-2000 – поковки
  • ГОСТ 4405-75 – полосы
  • ГОСТы 14955-77, 5950-2000 – серебрянка и шлифованные прутки

Cталь ШХ15СГ механические, технологические, физические свойства, химический состав. Сталь ШХ15СГ круг стальной пруток

Справочная информация

Характеристика материала сталь ШХ15СГ.

Марка сталисталь ШХ15СГ
Заменитель сталисталь ХВГ, сталь ШХ15, сталь 9ХС, сталь ХВСГ
Классификация сталиСталь конструкционная подшипниковая ГОСТ 801-78
ГП “Стальмаш” поставляет подшипниковую сталь ШХ15СГ в следующих видах металлопроката:круг ст ШХ15СГ круг ГОСТ 2590-2005 (ГОСТ 2590-88) круг (пруток) стальной горячекатаныйкруг ст ШХ15СГ круг ГОСТ 7417-75 круг (пруток) калиброванный
Применение стали ШХ15СГкрупногабаритные кольца шарико- и роликоподшипников со стенками толщиной более 20—30 мм, шарики диаметром более 50 мм; ролики диаметром более 35 мм.

Химический состав в % материала сталь ШХ15СГ

C SiMn Ni S P Cr Cu
0.95 – 1.050.4 – 0.650.9 – 1.2до   0.3до   0.02до   0.0271.3 – 1.65до   0.25

Температура критических точек материала сталь ШХ15СГ

Ac1 = 750 ,      Ac3(Acm) = 910 ,       Ar1 = 688 ,       Mn = 205

Механические свойства при Т=20oС материала сталь ШХ15СГ

СортаментРазмерНапр.sTd5y KCUТермообр.
ммМПаМПа % %кДж / м2
Сталь  590-730370-4102045440Отжиг 790 – 810oC,Охлаждение печь, 15 oC/ч,
    Твердость материала   ШХ15СГ   ,       HB 10 -1 = 179 – 207   МПа

Физические свойства материала сталь ШХ15СГ

TE 10- 5a 10 6lrCR 10 9
ГрадМПа1/ГрадВт/(м·град)кг/м3Дж/(кг·град) Ом·м
202.11  7650  
100      
200 13.4    
300 13.6    
TE 10- 5a 10 6lrCR 10 9

Технологические свойства материала сталь ШХ15СГ

  Флокеночувствительность:чувствительна.
  Склонность к отпускной хрупкости:склонна.

Зарубежные аналоги материала сталь ШХ15СГВнимание!   Указаны как точные, так и ближайшие аналоги

СШАГерманияЯпонияФранцияАнглияЕвросоюзИспанияКитайБолгарияВенгрияПольшаРумынияЧехия
DIN,WNrJISAFNORBSENUNEGBBDSMSZPNSTASCSN
Cr9SiMn
GCr15SiMn
GCr9SiMn

Обозначения:

Механические свойства :
– Предел кратковременной прочности ,
sT– Предел пропорциональности (предел текучести для остаточной деформации),
d5– Относительное удлинение при разрыве ,
y– Относительное сужение ,
KCU– Ударная вязкость , [ кДж / м2]
HB– Твердость по Бринеллю ,
Физические свойства :
T– Температура, при которой получены данные свойства ,
E– Модуль упругости первого рода ,
a– Коэффициент температурного (линейного) расширения (диапазон 20o – T ) , [1/Град]
l– Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]
r– Плотность материала , [кг/м3]
C– Удельная теплоемкость материала (диапазон 20o – T ), [Дж/(кг·град)]
R– Удельное электросопротивление,
Свариваемость :
без ограничений– сварка производится без подогрева и без последующей термообработки
ограниченно свариваемая– сварка возможна при подогреве до 100-120 град. и последующей термообработке
трудносвариваемая– для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки – отжиг

Сталь для качественных ножей

Впервые ШХ15 была создана, как производственная инструментальная сталь, но со временем она обрела большую универсальность и превратилась в один из лучших сплавов для изготовления ножей.

Металл прекрасно поддаётся термообработке, что позволяет активно применять его в производстве режущих инструментов. После термической обработки значительно увеличивается прочность и износостойкость ножей.

Клинки, выполненные из ШХ15, имеют длительный срок службы, так как устойчивость к внешним нагрузкам позволяет им долго удерживать заточку.  Они неплохо противостоят воздействию внешней среды.

Однако этот сплав из-за низкого содержания хрома в некоторой мере подвержен коррозионным процессам.


Клинок из стали ШХ15.

Сталь ШХ15 для ножей используется при производстве тактических, подарочных, охотничьих и кухонных моделей. Такие изделия без особых проблем справляются с разделкой мяса, рубкой костей и веток, резанием толстых верёвок, со всеми бытовыми задачами. Такой нож будет находкой для заядлого повара. А если тщательно следить и ухаживать за своим инструментом, то он прослужит долгое время.

Особенности обработки

Термическая обработка – важный технологический процесс, позволяющий увеличить основные качества металла. Обычно проводят закаливание уже готовых изделий, что позволяет сделать их поверхностный слой более прочным.

Закалка ШХ15 имеет некоторые сложности. Так как в свойства металла изначально заложена большая твёрдость, а после обработки она ещё несколько увеличивается, то заточка режущих инструментов значительно усложняется. Закалённая сталь плохо поддаётся резанию, поэтому детали прокаливаются только после придания окончательной формы. Термические режимы во многом зависят от температуры критических точек. При этом сплав нельзя охлаждать в воде, так как это приведёт к структурным деформациям.

Отжиг ШХ15 проходит при 800 градусах Цельсия, он позволяет устранить внутренние напряжение, которые являются частыми причинами возникновения сколов и трещин. Охлаждение может проводиться двумя способами: если изделие большое – на воздухе, если маленькое – в яме.

Подшипниковая сталь для ножей

Подшипниковые сплавы также нередко используются для производства ножей и других бытовых предметов. Чаще всего для производства ножей используется низколегированная хромистая сталь под маркой ШХ15.

Она характеризуется повышенной твердостью, хорошей износостойкостью, устойчивостью к ржавчине. Также стальной сплав характеризуется хорошей устойчивостью к различным температурным обработкам. После термообработки повышается твердость стали, но сохраняется пластичность и вязкость металла. Закалка ножей из подшипниковой стали происходит при температуре 825-855 градусов.

Преимущества и недостатки

Достоинства сплавов:

  • однородную структуру;
  • повышенную выносливость;
  • хорошую податливость;
  • высокая твердость;
  • износостойкость;
  • устойчивость к смятию;
  • возможность создания тонкой кромки при заточке.

Готовые изделия из подшипниковых сплавов служат не одно десятилетие даже при интенсивном использовании.

К недостаткам относят трудную заточку. Подшипниковая сталь ШХ15 хоть и является достаточно универсальной и недорогой, но при ковке мастером требует повышенной внимательности и аккуратности. Особенности заточки лезвия будут сопровождать клинок в течение всего времени эксплуатации.

Конструкционная сталь характеристики, свойства

Цена

Конструкционная подшипниковая сталь ШХ15СГ используется для изготовления шариков Ø более 50 мм, роликов Ø более 35 мм, колец ролико-/ шарикоподшипников с толщиной стенок более 20–30 мм.

Марка металлопроката

Заменитель

ШХ15СГ

ХВГ

9ХС

ХВСГ

ШХ15

Марка

Классификация

Вид поставки

ГОСТ

Зарубежные аналоги

ШХ15СГ

Сталь конструкционная подшипниковая

Сортовой прокат

801–78

есть

Ковка

Вид полуфабриката

t, 0С

Охлаждение

Размер

Условия

Слиток

1150–800

кольца до 400

Низкотемпературный отжиг

Заготовка

до 250

На воздухе

251–350

В яме

Резка

Исходные данные

Обрабатываемость резанием Ku

Состояние

HB, МПа

sB, МПа

твердый сплав

быстрорежущая сталь

отожженное

179–217

730

0,90

0,36

Склонность к отпускной хрупкости

Склонна.

Массовая доля элементов не более, %:

Кислород

Кремний

Марганец

Медь

Никель

Сера

Титан

Углерод

Фосфор

Хром

0,0015

0,4–0,65

0,9–1,2

0,25

0,3

0,02

0,01

0,95–1,05

0,027

1,3–1,65

Сортамент

ГОСТ

Размеры – толщина, диаметр

Режим термообработки

t

KCU

y

d5

мм

кДж/м2

%

%

МПа

МПа

Прокат

801–78

Отжиг (печь) 790–8100С, 150С/ч

800

440

45

20

370–410

590–730

Предел выносливости, МПа

Термообработка

НВ

t-1

s-1

Закалка

621–643

559

Отпуск

t

r

R 109

E 10-5

l

a 106

C

кг/м3

Ом·м

МПа

Вт/(м·град)

1/Град

Дж/ (кг·град)

20

7650

2.11

100

200

13.4

300

13.6

Англия

Болгария

Венгрия

Германия

Евросоюз

Испания

BS

BDS

MSZ

DIN, WNr

EN

UNE

Китай

Польша

Румыния

США

Франция

Чехия

Япония

GB

PN

STAS

AFNOR

CSN

JIS

Cr9SiMn

GCr15SiMn

GCr9SiMn

Сталь марки ШХ15СГ используют для изготовления деталей с высокой контактной прочностью/ твердостью/ износостойкостью.

Механические свойства

HRCэ

HB

KCU

y

d5

sT

МПа

кДж / м2

%

%

МПа

МПа

Твердость по Роквеллу

Твердость по Бринеллю

Ударная вязкость

Относительное сужение

Относительное удлинение при разрыве

Предел текучести

Предел кратковременной прочности

Ku

s0,2

t-1

s-1

Коэффициент относительной обрабатываемости

Условный предел текучести с 0,2% допуском при нагружении на значение пластической деформации

Предел выносливости при кручении (симметричный цикл)

Предел выносливости при сжатии-растяжении (симметричный цикл)

N

число циклов деформаций/ напряжений, выдержанных объектом под нагрузкой до появления усталостного разрушения/ трещины

Свариваемость

Без ограничений

Ограниченная

Трудно свариваемая

Подогрев

нет

до 100–1200С

200–3000С

Термообработка

нет

есть

отжиг

Физические свойства

R

Ом·м

Удельное сопротивление

r

кг/м3

Плотность

C

Дж/(кг·град)

Удельная теплоемкость

l

Вт/(м·град)

Коэффициент теплопроводности

a

1/Град

Коэффициент линейного расширения

E

МПа

Модуль упругости

t

Температура

Купить конструкционную подшипниковую сталь ШХ15СГ в Санкт-Петербурге Вы можете по телефону + 7 (812) 703-43-43. Специалисты компании «ЛенСпецСталь» оформят заказ, сориентируют по сортаменту, ценам, условиям доставки.

Выводы

Подшипниковые марки стали характеризуются хорошими эксплуатационными параметрами и подходят для изготовления не только изделий по назначению, но также и различных других. Универсальность сплавов и их высокая износостойкость обеспечивает им длительный срок пользования даже в весьма агрессивных средах

При выборе подшипниковых сплавов для изготовления изделий различных изделий очень важно учитывать особенности эксплуатации готовых деталей и их спецификацию

  • Технология металлов и других конструкционных материалов / В.М. Никифоров. — Москва:РГГУ, 2006.
  • Повышение способности металлов к пассивации применением комплексных добавок / Е.И. Тупикин. — М.: АСВ, 2009.
  • Обработка конструкционных материалов / Е.Н. Тронин. — М.: Высшая школа, 2004.
Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий

Adblock
detector