Методы и приборы для измерения волнистости
За рубежом волнистость определяется в соответствии со стандартами ISO (ISO 4287 и ISO 16610-21), а также согласно американскому стандарту ASME B46.1.
Измерения волнистости поверхности проводятся с помощью специальных профилометров и приборов для измерения шероховатости. То есть, с помощью стилуса (контактный щуповой метод) и с помощью бесконтактных оптических и лазерных приборов. Самым простым прибором, используемым для оценки волнистости поверхности,можно назвать волнометр (микротопограф). Волнометр использует пластиковый наконечник, собирающий информацию о состоянии поверхности детали. Собранные данные регистрируются в виде электронных сигналов высокого и низкого диапазонов. Таким образом, исследуя шарикоподшипник, сигнал низкого диапазона — 4-17 колебаний при каждом измерении, а сигнал высокого диапазона – 17- 3390 раз при каждом измерении (низкий сигнал означает наличие волнистости). Затем полученные сигналы передаются в осциллограф для анализа.
В России для определения волнистости используются приборы профилографы-профилометры. Эти устройства могут механически изучать поверхность и записывать полученные результаты в графическом варианте (круглограмма).
Также зачастую используется метод обнаружения микроволн на поверхности с помощью анализа записи магнитного диска (используется в качестве экспресс-теста для получения моментальных данных). Прибор для измерения волнистости с помощью этого метода состоит из: диска, двигающейся головки, детектора и программного или аппаратного обеспечения, которое фиксирует изменения на поверхности детектора при вращении диска по поверхности детали. В этом случае детектор является пьезоэлектрическим преобразователем. На поверхности изделия возникает электрическое напряжение. Сигнал на поверхности увеличивается с увеличением линейной скорости вращения диска. Сигнал на поверхности изделия коррелирует с микроволнистостью, таким образом, производится оптическое исследование поверхности изделия. Диск осуществляет магнитную запись. Детектор улавливает резонанс, который создают микроволнистость и потоки воздуха при вращении диска. Так определяется наличие микроволнистости и шероховатости на поверхности изделия.
Лазерный метод – один из простых и популярных методов исследования качества поверхности материала (детали). Например, компания Chapman Instrument Incorporated, предлагает прибор для определения шероховатости и волнистости. Его принцип действия основан на бесконтактном (оптическом) изучении поверхности линз, зеркал или призм. Мощный сканер считывает информацию с исследуемого материала на все 360 градусов. Благодаря этому прибору довольно легко определить размер и длину микроволн, которые не видны невооруженным глазом.
Методы и средства оценки показателя
Поверхность может иметь самые различные показатели, шероховатость один из наиболее сложных в измерении. Оценивать поверхность, а точнее, рассматриваемый показатель можно двумя наиболее распространенными методами, которые получили название качественный и количественный.
Особенностями качественного метода определения рассматриваемого показателя можно назвать нижеприведенные моменты:
- Визуальный осмотр проводится при наличии эталона. Подобный способ применяется на протяжении многих лет, но сегодня из-за невысокой эффективности встречается крайне редко.
- Поверхность может проверяться при использовании микроскоп или просто визуально. Специалист с высокой вероятностью может на ощупь определить то, к какому классу можно отнести поверхность.
Применение метода визуального осмотра возможно только в случае, есть тонкость обработки поверхности невысока. Контроль рассматриваемым методом определяет использование эталонов, которые должны иметь соответствующую шероховатость. Контролировать показатель можно только в том случае, если эталон изготовлен из того же материала, что и контролируемой детали. При недостаточной эффективности метода контроля при визуальном осмотре используются специальные микроскопы. Но зачастую визуального контроля недостаточно
Контролировать шероховатость можно и количественным методом. Он основан измерение параметра при помощи профилометра и профилографа. Контролировать параметры в данном случае приходится при контакте инструмента с поверхностью.
Профилографы – контактный инструмент, при помощи которого проводится измерение рассматриваемого показателя. Данная методика основана на измерении показателя путем получения изображения микронеровностей профиля. После получения изображения при измерении проводятся определенные расчеты.
Оценка этим прибором проводится следующим образом:
- Он контактный, поверхность ощупывается при помощи алмазной иглы.
- Этот прибор может относиться к оптико-механической группе оборудования. Подобные методики позволяют получить фотографию: деталь ощупывается и изображение наносится на ленту в увеличенном виде. При контактной методике проверка позволяет определить от 4-го до 11-го класс. Проверить подобным способом можно металл и другие материалы.
Профилометры: виды и применение
Профилометры – методика, предусматривающая использование инструмента, который не предусматривает получение изображений. Контактный метод позволяет провести точные расчеты для получения нужного результата. Этот инструмент может относиться к контактной группе, имеет следующие особенности:
- Относится оборудование к рассматриваемой группе по причине проверки путем ощупывания поверхности иглой.
- Оценка проводится за счет перемещения иглы вдоль своей оси. При этом оценивается частота и амплитуда колебания. Их определение позволяет определить класс шероховатости.
- Прибор относится к электрическим системам, имеет специальные датчики и процессор для обработки полученной информации. В данном случае для определения Ra или Rz не нужно проводить сложные расчеты. Способ подходит для случая, когда высота микронеровностей находится в пределе от 0,03 до 12 мкм. Можно проверять этим устройство металлы и другие материалы. Определять рассматриваемый показатель данным способом решил В.М. Киселев, который разработал это средство.
Есть довольно много методов определения степени шероховатости. Некоторые средства и методы уже практически не применяются по причине появления более современных инструментов, которые позволяют повысить точность изменения и снизить вероятность ошибки. Некоторое оборудование относится к контактному типу, другие к оптическому и смешанному типу. Выбор зависит от того, насколько высока должна быть точность проведенных измерений.
Профилометр
Профилометры для цехового контроля шероховатости поверхности типа 240 ( ГОСТ 9504 – 60) предназначены для 6 – 12-го классов.
Профилометры сразу показывают на индикаторе среднюю квадратичную величину неровностей поверхности в микронах.
Профилометры весьма удобны в эксплуатации.
Профилометр позволяет определять чистоту поверхности в отверстиях диаметром от 8 5 мм. С дополнительными устройствами прибор может также записывать про-филограмму. Малый датчик профилометра предназначен для измерения небольших деталей, в частности цилиндрических поверхностей диаметром от 8 мм. Помимо самописца, к прибору выпускается приставка для оценки чистоты поверхности по параметру – глубина сглаживания ( G) с диапазонами измерений: 0 – 1 25; 0 – 6 25 и 0 – 12 5 мк. Устройство рассчитано на использование его в процессе обработки. Сигнальная лампочка, расположенная на передней панели, горит до тех пор пока величина G не достигнет заранее установленного на приборе значения.
Профилометр должен быть рассчитан на измерение поверхности с регулярным профилем любой формы, а также поверхностей, отклонения неровностей которых от средней линии можно рассматривать как стационарный случайный процесс. На основе разложений в ряд Фурье можно предъявить определенные частотные требования к измерительному тракту щуповых приборов, для обеспечения правильного воспроизведения измеряемого Процесса или входной функции.
Профилометр Киселева, как и профилометр Аббо-та, – электромагнитный прибор, в котором катушка, жестко соединенная с ощупывающей алмазной иглой, перемещается в поле постоянного магнита. При ощупывании неровностей поверхности в витках катушки возбуждается ток, который поступает па интегрирующий контур и после усиления на стрелочный прибор, на котором отсчитывается величина среднего ква-дратического отклонения высот неровностей.
Профилометр показывает числовое значение измеряемого параметра шероховатости.
Профилометры этого типа используют преобразователи из длинных пластинок сегнетовой соли, работающих на изгиб ( фиг. Игла 1 прижимается под действием собственного веса подвижной части 2 преобразователя к испытуемой поверхности детали 3, устанавливаемой либо на плите 4, либо на столике 5, в зависимости от размеров детали. Подвижная часть с ощупывающей иглой совершает возвратно-поступательное перемещение в направлении стрелки а. Привод 6 с подвижной частью 2 может перемещаться по направляющей колонке стойки 7 в вертикальном направлении, занимая положение, определяемое размерами испытуемой детали.
Профилометры применяются для оценки чистоты поверхности в пределах 5 – 12-го класса чистоты. Оценка чистоты поверхности 10 – 14-го классов осуществляется микроинтерферометрами Линника.
Профилометр в данном случае неприменим, так как он царапает поверхность слепка и искажает форму неровностей.
Профилометры и профилографы применяют для лабораторного исследования чистоты обработанной поверхности.
Обозначение шероховатости, когда все поверхности имеют одинаковую шероховатость.| Обозначение шероховатости, когда часть поверхностей остается в состоянии поставки.| Обозначение одинаковой шероховатости для части поверхностей. |
Профилометры предназначены для непосредственного показа среднего арифметического отклонения профиля поверхности Ra. Профилографы записывают профиль поверхности в виде про-филограммы. На рис. 36, а показан про-филограф-профилометр, а на рис. 36, б – принцип действия этого щупового прибора.
Профилометр 253 имеет аналогичную конструкцию и техническую характеристику, но вместо индуктивного датчика в нем использован механотрон. Высокая чувствительность механотрона позволила значительно упростить электрическую схему прибора.
Профилометр используется для исследования поверхности путем ощупывания иглой. Возникающие при перемещении колебания иглы, возбуждают электрический ток в катушке, с которой соединена игла. Сила тока пропорциональна скорости движения иглы. Через цепь усилителей профилометр присоединяется к осцило-графу, на экране которого можно наблюдать в увеличенном виде как вертикальные, так и горизонтальные перемещения иглы.
По этому признаку выделяют приборы:
– Профилометр с постоянной трассой интегрирования, трасса ощупывания в которых, равна, по длине, трассе интегрирования. Таким образом, результаты измерений можно увидеть только в конце, при завершении процедуры.
– Профилометр обладающий скользящей трассой интегрирования, в котором трасса ощупывания в несколько раз длиннее трассы интегрирования. Таким образом, отсчет показаний и результатов измерения производится одновременно с перемещением иглы по поверхности.
К тому же, существуют профилометры с механотронными преобразователями, которые измеряют параметры неровностей, указывая среднее арифметическое значение отклонения профиля – Ra.
Большинство приборов оснащены анализатором, который позволяет судить о неровностях поверхности по гармоническим колебаниям сигнала от иглы.
Погрешность профилометра обычно колеблется впределах от ±25%, до ±10%.
В качестве примера профилометра можно привести профилометр модели 130. Данный прибор внесен в Госреестр средств измерений. Работает путем подключения к компьютеру и настройкой специальной программой. Профилометр модели 130 является лабораторным стационарным прибором высокой точности.
Также стоит выделить профилометр «СЕЙТРОНИК-ПШ8-1» из линейки профилометров СЕЙТРОНИК. Эти приборы являются переносными, имеют подключение к компьютеру через порт RS232, и позволяют производить основные измерения параметров шероховатости с достаточной точностью.
2) Профилограф – это прибор, который, идентично профилометру, предназначается для контроля параметров шероховатости поверхности, однако, имеет от него отличия в плане вывода результатов измерений. В профилографе результаты измерений представляются в виде кривой – профилограммы, определяющей волнистость и шероховатость. Обработка результатов производится графоаналитическим методом.
Конструктивно, профилограф состоит из нескольких блоков, а именно: измерительного, преобразовательного и записывающего.
Первый блок – называется измерительным, поскольку именно в нем получается сигнал, который является основой всего измерения. На основании этого сигнала и строится, в последствии, кривая, характеризующая микронеровности. Данный блок состоит, как правило, из иглы, привода иглы и измерительного столика.
Второй блок – электронный преобразовательный, в котором сигнал из первого блока усиливается и преобразуется при помощи специальных электронных преобразователей.
Третий блок – записывающий, на который поступает обработанный сигнал со второго блока. Обработанный сигнал, при помощи записывающего устройства, аналогового или электронного, преобразуется в профилограмму в увеличенном масштабе. При этом, в качестве материала для вычерчивания профилограммы может выступать металлизированная бумага, светочувствительная бумага или специальная пленка.
Таким образом, принцип действия профилографа, мало чем отличается от принципа действия профилометра, единственным отличием, здесь, является отображение результатов не на экране в виде числовых значений, а графически.
Профилограмма записывается устройством в увеличенном масштабе, при этом, по горизонтали увеличение достигает 100 000 раз, а по вертикали от 400 до 200 000 раз. Благодаря увеличению, расшифровку делать становится гораздо удобнее.
Погрешность профилографа не выходит за рамки ±5-10 %.
Помимо перечисленных устройств: профилометров и профилографов, существуют комбинированные приборы, называемые профилографы-профилометры.
3) Профилограф-профилометр – приборы данного типа предназначаются для записи измеренных параметров микронеровностей поверхности на бумажный носитель (например, электротермическую бумагу), и одновременного наблюдения, в режиме реального времени, за результатами проводимых измерений при помощи показывающего устройства – цифрового или аналогового.
Самыми распространёнными профилографами-профилометрами являются приборы «Сейтроник-ПШ8» различных модификаций. Так, например, выпускаются модели СЕЙТРОНИК-ПШ8-4, СЕЙТРОНИК-ПШ8-3 и СЕЙТРОНИК-ПШ8-2 , которые отличаются шагом длины трассы ощупывания, наличием/отсутствием встроенного принтера, параметрами увеличения.
Принцип действия профилографа-профилометра идентичен принципам действия приборов, входящих в его название. Также, как и вышеописанные приборы, он работает путем ощупывания контролируемой поверхности заточенной иглой с малым радиусом закругления и преобразовании колебаний от иглы в электрический сигнал, а также последующего мониторинга и записи результатов.
Описание
Действие прибора основано на принципе ощупывания неровностей измеряемой поверхности щупом (алмазной иглой) в процессе перемещения индуктивного датчика вдоль измеряемой поверхности и последующего преобразования возникающих при этом механических колебаний щупа в цифровой сигнал.
В комплект поставки прибора входит индуктивный датчик с опорой на измеряемую поверхность. Датчик закрепляется в электромеханическом приводе, с помощью которого он перемещается по горизонтальной измеряемой поверхности. В вертикальном направлении, для обеспечения контакта датчика с измеряемой деталью, привод с датчиком устанавливается непосредственно на детали или на стойке, на которой также устанавливается измеряемая деталь. Питание датчика, управление приводом, формирование и обработка сигнала и измерительной информации осуществляется с помощью информационно-вычислительного блока, выполненного в виде платы, встраиваемой в компьютер, привод или в выносной блок компьютера. Управление профилометром осуществляется с клавиатуры привода или персонального компьютера.
Данные с прибора могут быть обработаны посредством специального программного обеспечения, которое производит расчет параметров шероховатости, задавая требуемые условия измерений, выводит на экран профилограмму измеренного профиля, выделяет на ней отдельные участки и производит расчет значений параметров шероховатости, выделяет отдельные элементы профиля и определяет их геометрические параметры (линейные размеры, углы наклона), а также производит накопление и хранение результатов измерений и их статистическую обработку.
Принцип действия профилометров
Рассматриваемые приборы могут замерить показатели шероховатости контактным и бесконтактным способом. В первом случае по измеряемой поверхности перемещается измерительный щуп, который заканчивается твёрдым наконечником. Амплитуда вибраций щупа усиливается, и, преобразуясь в электрический сигнал, замеряет показатель шероховатости. К этому варианту может относиться технология оптического или лазерного сканирования поверхности.
Профилометр ПМ-80 МИКРОТЕХ.
Большинство методов исследований ориентируется именно на контактные профилометры. Это объясняется высокой точностью результата, который можно получить уменьшением контактной площади алмазной иглы (иногда применяют и иглы из твёрдого сплава). В то же время, при использовании оптических профилометров бесконтактного типа требуется работать только с образцами, поверхность которых очищена от всех поверхностных загрязнений, искажающих результат замеров.
В зависимости от поставленных контактные профилометры могут замерять трассу с постоянной или переменной длиной. Способ преобразования сигнала — пьезоэлектрический, индуктивный или механотронный.
https://youtube.com/watch?v=hSCNcu-eIZc
Последовательность измерений шероховатости определяют ГОСТ 2789 и ГОСТ 19300. Точность действия профилометров находится в диапазоне ±10…±20 %.
Технические характеристики
Основные метрологические и технические характеристики профилометров приведены в таблице 2.
Таблица 2
Наименование характеристики |
Значение характеристики |
Диапазон измерений линейных размеров (ось Z), мм |
от 0 до 40 |
Пределы допускаемой абсолютной погрешности измерений линейных размеров (ось Z) в диапазоне от 0 до 1 мкм, нм |
± 50 |
Пределы допускаемой относительной погрешности измерений линейных размеров (ось Z) в диапазоне от 1 мкм до 40 мм, % |
± 5 |
Повторяемость (среднеквадратическая погрешность) измерений высоты ступеньки, % |
0,1 |
Максимальное разрешение по оси Z, нм |
0,1 |
Диапазон измерений линейных размеров по оси X, мкм, для объектива: 2,5х 5х 10х 20х 50х 100х 150х |
от 5,16 до 7000 от 2,58 до 3500 от 1,29 до 1750 от 0,65 до 870 от 0,26 до 350 от 0,13 до 170 от 0.09 до 110 |
Диапазон измерений линейных размеров по оси Y, мкм, для объектива: 2,5х 5х 10х 20х 50х |
от 5,16 до 5280 от 2,58 до 2640 от 1,29 до 1320 от 0,65 до 660 от 0,26 до 260 |
100х 150х |
от 0,13 до 130 от 0.09 до 88 |
Пределы допускаемой относительной погрешности измерений линейных размеров в плоскости XY % |
± 8 |
Максимальное разрешение в плоскости XY, нм |
90 |
Максимальный диапазон перемещений предметного стола (оси Х, У) и сенсорной головки (ось Z), мм: по оси Х, У по оси Z |
600х600 800 |
Максимальный размер образца (ширинахдлинахвысота), мм, не более |
600x600x800 |
Габаритные размеры (ширинахвысотахглубина), мм, не более |
358x537x517 |
Масса без ЗИП и упаковки, кг, не более |
92 |
Рабочий диапазон температуры окружающей среды, °С |
от 15 до 25 |
Относительная влажность воздуха при температуре 20 °С, %, не более |
от 5 до 80 |
Диапазон атмосферного давления, кПа |
от 97 до 105 |
Вибрация, Гц |
от 1 до 120 |
Напряжение питания от сети переменного тока частотой (50 ± 1) Гц, В |
220 ± 22 |
Потребляемая мощность, В А, не более |
210 |
Измерители шероховатости поверхности (Профилометры)
Шероховатость поверхности — совокупность неровностей на поверхности с относительно малыми шагами на базовой длине. Шероховатость измеряется в микрометрах. Шероховатость относится к микрогеометрии твёрдого тела и определяет его основные эксплуатационные свойства: прочность, герметичность(в случае соединений), износостойкость и внешний вид. При проектировании деталей машин обязательно указывается шероховатость поверхности на чертежах и в технологических картах.Исходная шероховатость является следствием технологической обработки поверхности материала: сверление, точение, фрезерование, зенкерование, шлифование.В результате изнашивания параметры шероховатости, обычно, изменяются и образуется эксплуатационная шероховатость.
Для измерения неровностей поверхности широко используются контактные приборы- профилометры. Измерители шероховатости поверхности предназначены для измерений в лабораториях и цехах машиностроительных и приборостроительных производств, а также в полевых условиях. Измерение параметров шероховатости производится по системе средней линии в соответствии с ГОСТ 2789-73. Этот стандарт нормирует типы и направления неровностей и общие указания по установлению требований к шероховатости. Стандарт не распостраняется на шероховатость ворсистых и других поверхностей, характеристики которых делают невозможным нормирование шероховатости. Стандарт также не распостраняется на дефекты поверхности, являющиеся причиной случайных повреждений или дефекты материала( трещины, раковины). При контроле шероховатости влияние дефектов поверхности должно быть исключено.При необходимости дополнительно к параметрам шероховатости поверхности устанавливаются требования к направлению неровностей поверхности, к способу или последовательности способов получения (обработки) поверхности.Портативный измеритель шероховатости контактного типа имеет датчик, тонкая игла которого выполнена из твердого материала. В процессе измерения алмазная игла перемещается вдоль измеряемой поверхности, огибая все неровности этой поверхности. Игла жестко соединена с электронным датчиком, который преобразует перемещение иглы в вертикальной плоскости в электрический сигнал. Электрические сигналы, полученные от датчика,позволяют получить следующие основные параметры шероховатости: Ra, Rz,Рmax.
Измерители шероховатости различаются по количеству измеряемых параметров. диапазону измерений и точности измерений. Одними из самых популярных приборов для измерения шероховатости поверхности являются профилометры компании TIME Group Inc: измеритель шероховатости TR100, измеритель шероховатости TR200.Измеритель шероховатости Time TR 110 отличается доступной ценой и портативными размерами. Измеритель шероховатости Time TR 210 позволяет измерять 4 основных параметра шероховатости. Чем выше стоимость прибора, тем больше параметров измеритель шероховатости может измерить или рассчитать математически.
Способы измерения
Показатель может быть измерен путем ручного сравнения с «компаратором шероховатости» (образец известной шероховатости поверхности), но в более общем случае измерение профиля поверхности выполняется с помощью профилометров. Они могут быть контактного типа (как правило, алмазный стилус) или оптическими (например, интерферометр белого света или лазерный сканирующий конфокальный микроскоп).
Вам будет интересно:Правило Тициуса-Боде: расстояния между планетами и Солнцем
Однако контролируемая шероховатость часто может быть желательной. Например, глянцевая поверхность может быть слишком блестящей для глаз и слишком скользкой для пальца (хороший пример — тачпад), поэтому требуются контролируемые показатели. Шероховатость поверхности — это тот случай, когда амплитуда и частота очень важны.
Ее значение может быть рассчитано либо по профилю (линия), либо по поверхности (площадь). Параметр шероховатости профиля (Ra, Rq, …) встречается чаще. Параметры шероховатости площади (Sa, Sq, …) дают более значимые определения.
Применяемые методы контроля
Шероховатость поверхности может оцениваться самыми различными методами. Контроль может проводится на различных этапах, в некоторых случаях он визуальный, в других предусматривает применение специальных инструментов. Наиболее распространенными методами контроля шероховатости поверхности можно назвать:
- Компараторы.
- Электронные приборы.
- Микроскопы.
- Метод реплик согласно стандартам ISO.
- Профилометр.
Шероховатость поверхности контролируют в процессе обработки материала или после выпуска продукции при определении его качества. Наиболее доступный метод оценки визуальный, но он не позволяет определить шероховатость поверхности с высокой точность. Визуальный метод не является разновидностью контроля, а только позволяет определить наличие или отсутствие дефектов. Наиболее доступный метод контроля шероховатости поверхности заключается в применении компараторов ISO, технические показатели которого соответствуют установленному стандарту ИСО 8503-1. Для контроля могут использоваться два типа рассматриваемого измерительного инструмента, которые применимы на различных производствах.
ОПИСАНИЕ
Действие профилометров основано на принципе ощупывания неровностей измеряемой поверхности шупом (алмазной иглой) в процессе перемещения индуктивного датчика вдоль измеряемой поверхности и последующего преобразования возникающих при этом механических колебаний щупа в цифровой сигнал.
Профилометр состоит из индуктивного датчика с опорой на измеряемую поверхность. Датчик закрепляется в электромеханическом приводе, с помощью которого он перемещается по горизонтальной измеряемой поверхности. В вертикальном направлении, для обеспечения контакта датчика с измеряемой деталью, привод с датчиком перемещается по колонне, установленной на основании, на котором также базируется измеряемая деталь.
Питание датчика, управление приводом, формирование и обработка сигнала измерительной информации осуществляется с помощью информационно-вычислительного блока, выполненного в виде платы, встраиваемой в компьютер или в выносной блок компьютера. Управление профилометром осуществляется с клавиатуры компьютера. Специальное программное обеспечение позволяет производить расчет параметров шероховатости, задавая требуемые условия измерений, выводить на Э1фан профилограмму измеренного профиля, выделять на них отдельные участки и производить на них расчет значений параметров шероховатости, выделять отдельные элементы профиля и определять их геометрические параметры (линейные размеры, углы наклона), а также производить накопление и сохранение результатов измерений и их статистическую обработку.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Измеряемые параметры шероховатости: |
Ra; Rz; Rmax; Rp; Rv; Rq; |
(по ГОСТ 25142-82) |
Sm; S; Xa; Xq; tp; Lo; lo; D; Aa; Aq |
Диапазон измерений: |
|
параметров Ra и Rq, мкм |
0,012-50 |
параметров Rp и Rv, мкм |
0,025-125 |
параметров Rz и Rmax, мкм |
0,05-250 |
параметров Sm, S, Ха и Xq, мкм |
10-1600 |
параметра tp,o/„ |
1-100 |
параметра Lo, мкм |
100-100000 |
параметра 1о |
1-10 |
параметра D, 1/см |
4-1000 |
параметров Да и Aq, град. |
0,01-30 |
Значения отсечек шага Х,ь, мм |
0,08;0,25;0,8; 2,5; 8 |
Пределы допускаемой основной погрешности А для профиля, близкого к
Пределы допускаемой основной погрешности А для профиля, близкого к
При измерении параметров |
для степени точности 1 |
для степени точности 2 |
Ra, |
A = 0,02П + 0,04И |
А = 0,03П + 0,06И |
Rz, Rmax, Rp, Rv, Rq |
А = 0,03П + 0,05И |
А = 0,06П + 0,08И |
Sm, S, Xa, Xq |
А= 0,02П + 0,10И |
А = 0,03П + 0,15И |
tp |
А = 0,08П + 0,02И |
А = ОДП + 0,03И |
D, Lo, lo, Aa и Aq |
А = 0,14И |
А = 0,18И |
(где И – действительное значение соответствующего параметра, И – верхний предел поддиапазона измерений соответствующего параметра). Максимальная скорость трассирования датчика, мм/с Максимальная длина оценки, мм. Радиус кривизны верщины иглы, мкм Тип фильтра
Диапазон рабочих температур, °С Габаритные размеры, мм, не более привод датчик стойка
информационно-вычислительный блок ИВБ Масса, кг
2,0 12,5 10 ±2,5 2RC-FC +10…+35
150x60x75 170 X 15,5 X 15,8 420 X 200 X 300 120 X 140×25 18
ЗНАК УТВЕРЖДЕНИЯ ТИПА
Знак утверждения типа наносится на титульный лист паспорта методом принтерной печати и, выполненный в виде аппликации, наклеивается на основание прибора.
КОМПЛЕКТНОСТЬ
ЗНАК УТВЕРЖДЕНИЯ ТИПА
Знак утверждения типа наносится на титульный лист паспорта методом принтерной печати и, выполненный в виде аппликации, наклеивается на основание прибора.
КОМПЛЕКТНОСТЬ
1 |
Датчик |
1 |
2 |
Привод |
1 |
3 |
Информационно-вычислительный блок* |
1 |
4 |
Стойка |
1 |
5 |
Призма для базирования цилиндрических деталей |
1 |
6 |
Настроечная (калибровочная) мера |
1 |
7 |
Управляющая программа** |
1 |
8 |
Паспорт |
1 |
* Информационно-вычислительный блок поставляется в виде платы, встраиваемой в
компьютер или в выносной блок компьютера. ** Управляющая программа поставляется на дискете 3,5″.
* Информационно-вычислительный блок поставляется в виде платы, встраиваемой в
компьютер или в выносной блок компьютера. ** Управляющая программа поставляется на дискете 3,5″.