Поршневой жидкостной насос

Плунжерный насос: принцип работы, типы и применение

Старое насосное оборудование, предназначенное для перекачки воды, постепенно устраняется из домашней обстановки и производственных условий. Теперь вместо традиционного поршневого устройства используется плунжерный насос, направленный на смешивание различных компонентов жидкости и правильно их дозирующих. Часто даже в бытовых условиях возникает потребность в создании раствора из нескольких жидких компонентов. В таких случаях механизм будет отличным помощником.

Особенности конструкции и принцип действия

Фирменный плунжерный насос

По своим особенностям устройство относят к классу гидравлических механизмов. Все эти конструкции подразделяются на объемные и необъемные и являются разновидностью поршневых агрегатов. Единственным отличием насосов является установленный во внутрь цилиндрический поршень для работы, называемый плунжером. В процессе работы металлический стержень не имеет контакта со стенками корпуса насоса. В этих инструментах дозировочного типа плунжеры соответствуют качествам прочности, долговечности и герметичности.

Работоспособность установки основывается на движении цилиндрического поршня (плунжера). Если этот механизм поступательно двигается в правую сторону, давление снижается в механизме, в то время, когда его показатели во всасывающей трубе сохраняются на должном уровне. Если плунжер направляется в противоположную сторону — происходит обратный процесс действия.

Важно! Если происходит смена уровней давления плунжерного механизма, возможно появление пульсирующих движений, что небезопасно для дальнейшей работоспособности конструкции. Для этих случаев характерно устранение проблемы

Разновидности плунжерных насосов и их характеристика

Каждое насосное оборудование для воды разделяется на типы, благодаря которым использование агрегатов становится более удобным, а особенность действия практичной. Доказано, что водные плунжерные насосы действуют на подобие поршневого агрегата, поэтому их разновидности могут быть схожими. По конструкционным особенностям водный насос подразделяют на:

Конструкция плунжерного насоса чертеж

  • горизонтальный;
  • вертикальный;
  • многоплуженный или одноплуженный;
  • по типу управления: автоматические или ручные;
  • с обогревом и без;
  • многоцилиндрованные и с одним цилиндром;
  • с герметиком на цилиндрах.

Теперь по порядку рассмотрим принцип конструкции перечисленных разновидностей.

В плунжерных установках горизонтального действия, рабочим механизмом служит пускательный клапан, который не требует специальной обработки цилиндра, как это случается в насосе традиционного поршневого типа. Конструкция уплотнена при помощи сальника, за счет чего увеличивается функциональность цилиндра.

В вертикальном типе жидкостного насоса рабочим механизмом служит пустотельный стакан. Конструкция подвержена длительной работе из-за установленного уплотнителя. В случае разбалтывания механизма его легко подтягивают, а при необходимости проводят замену сальника. Его применение сосредоточено в рабочих отраслях.

Присутствие рубашки обогрева необходимо для действия охлаждения системы. Это позволяет осуществлять работу таким насосом непрерывно, при отсутствии подобной функции рекомендуется для жидкостного агрегата составлять индивидуальный режим работы.

Промышленный плунжерный насос

Многоплунжерные насосы отличаются от одноплунжерных количеством вращательных механизмов, если в одиночном насосе присутствует всего один стержень, то во втором их насчитывается более трех.

Плунжерный жидкостный насос может быть оснащен автоматической или ручной комплектацией. От этого зависит каким будет принцип управления установкой. Также устройство различают по количеству цилиндров и присутствие герметичного слоя на них.

Внимание! Дозирующий насос должен отвечать всем характеристикам, которые указаны по отношению к нему в паспорте. В противном случае, установка считается неработоспособной

При обнаружении в насосе неполадок, обязательно прекратите его использование.

Сфера использования плунжерных насосов и их назначение

На сегодняшний день, насос поршневого типа (плунжерный) широкого действия, применяется во всех промышленных сферах и для определенных бытовых целей. Некоторые установки предназначены для откачивания агрессивных загрязнений и жидкостей. Отдельные агрегаты специализируются на перекачивании воды в технических агрегатах и участвуют в системе охлаждения.

Как работает гидромотор

Принцип действия гидравлического мотора прост и соответствует требованиям надежности к этому механизму. При работе гидромотора происходит преобразование энергии жидкости (подача рабочей жидкости под давлением) в механическую энергию (съем с вала крутящего момента). Сам процесс описывается, как периодическое заполнение рабочей камеры жидкостью при дальнейшем её вытеснении. Слив происходит с потерей давления, что позволяет получить полезный перепад давления, который и трансформируется в механическую энергию.

Преимущество, которым обладают гидромоторы обусловлено широким диапазоном регулирования частоты вращения. Так при использовании гидрораспределителя или других средств, регулирующих движение вала, можно добиться показателей 30-40 об/мин, а гидромоторы специального исполнения позволяют задать параметры 1-4 об/мин.

По конструктивным особенностям гидромоторы подразделяются на следующие типы:

  • Шестеренные;
  • Пластинчатые;
  • Радиально-поршневые;
  • Аксиально-поршневые;

Принцип действия шестеренных гидромоторов

Шестеренные гидромоторы работают по принципу подачи давления жидкости на шестерни с неуравновешенными зубьями, что придает им вращение. Преимущество данного типа гидравлического мотора заключается в простоте конструкции и возможности достижения частоты вращения до 10000 об/мин (специальное исполнение). Обычная частота вращения достигает 5000 об/мин при установленном давлении рабочей жидкости — 200 bar. К недостаткам шестеренного гидромотора относится низкий коэффициент полезного действия, который не превышает значения 0,9.

Пластинчатые гидромоторы

В пластинчатых гидромоторах рабочие камеры образуются вытеснителями, пластинами расположенными на роторе. Для герметичности камер применяются пружины под пластинами, обеспечивая их постоянное прижимное усилие к стенкам статора. Ось ротора смещена относительно оси статора и при подаче рабочей жидкости объем камеры всасывания увеличивается, а объем камеры, из которой происходит нагнетание, уменьшается. К недостаткам механизмов подобного типа относят низкую ремонтопригодность и невозможность эксплуатации агрегата при низких температурах (залипание пластин).

Радиально-поршневые гидромоторы

Радиально-поршневые гидромоторы применяются при относительно высоком давлении рабочей жидкости (от 10 мПа). Камерами в гидромоторе являются цилиндры, расположенные радиально, соответственно роль вытеснителей играют поршни. Под воздействием высокого давления рабочие камеры приводят в движение вал мотора. Механизм распределения на валу поочередно соединяет камеры с линиями давления и слива рабочей жидкости.

Аксиально-поршневые гидромоторы

Аксиально-поршневые гидромоторы работают по уже известному принципу — рабочие камеры, это цилиндры, аксиально расположенные относительно оси ротора, а вытеснители — поршни. Цилиндры располагаются вокруг оси вращения или под небольшим углом к ней. Во время вращения вала вращаются и блоки цилиндров. При выдвижении поршней из цилиндров происходит всасывание жидкости, а при обратном движении поршней осуществляется нагнетание.

Основные неисправности гидромоторов

Практически все виды неисправностей в гидромоторах относятся к механическим повреждениям и износу деталей участвующих в передаче крутящего момента. Образование задиров, повышенный износ, разрушение уплотнений — все это ведет к замедленной работе механизма и потери мощности агрегата. Обнаружение неисправности и ремонт гидродвигателей осуществляется в специализированных мастерских, обладающих необходимым инструментарием и диагностическим оборудованием.

Горячая линия (ремонт, комплектующие): +7 (495) 660-04-23

РЕМОНТ И ОБСЛУЖИВАНИЕ ЛЮБОЙ ГИДРАВЛИКИ

Плунжерный насос высокого давления

Принцип действия насоса высокого давления основан на увеличении хода плунжера, что, соответственно, увеличивает не только производительность, но и получаемое давление. Длина хода увеличивается за счет двухстороннего всасывания или наличия нескольких плунжеров.

Двухстороннее действие обозначает, что процесс откачивания происходит с двух сторон цилиндра, внутри которого двигается шток (плунжер). Перемещаясь вправо, шток создает давление для всасывания с левой стороны и нагнетает среду, выталкивая ее из рабочей камеры, справа. При движении влево процессы происходят в обратном порядке. Таким образом, объем перекачиваемой жидкости или создаваемое давление газа на выходе увеличивается в два раза. Тот же принцип действия имеют поршневые двухсторонние насосы.

Насосы высокого давления промышленного значения могут создавать давление до 3,5 мбар при мощности около 800 кВт.

Достоинства и недостатки радиально поршневых насосов

Положительные стороны:

  1. Производят высокое давление в гидравлической системе;
  2. Есть модели с опцией регулирования рабочего объема подачи;
  3. КПД находится на достаточно высоком уровне при большом давлении;
  4. Высокая энергоемкость на единицу массы;

Отрицательные стороны:

  1. Сложное устройство, небольшая надежность;
  2. Необходимость специфичной обработки деталей, а также сложное строение самого насоса приводит к высокой цене на данные агрегаты;
  3. Нужна тонкая фильтрация рабочей жидкости;
  4. Высокая пульсация подачи и расхода;
  5. Занимают много места;
  6. Низкий вращающий момент основного вала;

Вал и подшипники

Какой бы вид колеса  не применялся, он закреплен на вращающемся валу. Вал должен быть закреплен в корпусе подшипниками одним из 2 способов:

  1. Консольно
  2. Симметрично

Консольное закрепление

При консольном укреплении вала, рабочее колесо закреплено на одном конце, а подшипники на другом.

Такая конструкция располагает всасывающее и напорное отверстие перпендикулярно друг другу, а всасывающее отверстие – прямо перед центром колеса.

Такие насосы называются насосы с торцевым всасыванием. Они широко распространены из-за своей дешевизны и простоты производства, но они имеют один недостаток, связанный с путём движения жидкости.

Во время работы насоса, создается зона с низким давлением во всасывающем отверстии.

Есть зона повышенного давления на выходе из колеса, из которого жидкость, получившая энергию, попадает в спиральный кожух.   

Жидкость течет к задней пластине в открытых и полуоткрытых колесах, что полностью разрушает баланс  давлений. В результате возникает осевая сила или нагрузка – выталкивающая колесо к всасывающему отверстию.

Это можно компенсировать, устанавливая сильные подшипники или просверлив дырки в пластине колеса для выравнивания давлений. Но это не эффективные способы.

Симметричное крепление

Более действенное решение – расположение вала на подшипниках с двух сторон. Это называется симметричной конструкцией.

Поддержку вала улучшает не только расположения подшипников с двух сторон, но и возможность использовать симметрические закрытые колеса с двойным всасыванием.

Поскольку есть такие же зоны с высоким и низким давлением на обеих сторонах колеса, это успешно устраняет нагрузочные силы, благодаря балансу давлений. Так же эта конструкция имеет иное преимущество. Всасывающее и напорное отверстия расположены параллельно друг другу на противоположных сторонах насоса, и корпус разделён по оси.

Просто открутив болты и сняв крышку, обслуживающий техник может добраться до вращающейся части насоса внутри него без извлечения всего насоса из системы.

Благодаря раздельной осевой конструкции, насосы в симметричном расположении подшипников называют насосами с разборным корпусом.

Всё это, конечно же, очень весомые причины для того чтобы установить в своей шахте такой насос прямо сейчас. Но есть некоторые недостатки. Потому что обслуживающие операции и требования к уплотнению более сложные для насосов с разборным корпусом, чем для насосов с торцевым всасыванием. Они так же более дорогие.

Устройство

Можно выделить два вида конструкции, таких гидравлических систем:


Схема радиально поршневых насосов

  • Гидронасос с эксцентричным ротором. На схеме под буквой А
  • Гидронасос с эксцентричным валом. На схеме под буквой Б

Устройство с эксцентричным ротором

Главной частью является ротор со встроенными в него поршнями. Поршней может быть много и располагаться они могут в несколько рядов. Ротор вращается в корпусе(Статоре). Ось ротора установлена со смещением центра относительно оси статора на величину «е» как показано на рисунке. Системы забора и нагнетания расположены в центре и отделяются друг от друга специальной перемычкой.

Устройство с эксцентричным валом

В данном устройстве гидравлической системы, поршни располагаются в статоре насоса. Ось статора и вала совпадают, но на вале есть специального рода кулачек, смещенный по отношению к статору на расстояние «е». Такие гидравлические установки имеют клапанное распределение. При сжимании рабочей камеры клапан всасывания закрывается и открывается клапан нагнетания. При расширении рабочей камеры происходит обратная ситуация.

Что это такое?

Гидравлические машины, входящие в группу аксиально-поршневых, при передаче одинаковой мощности в сравнении с прочими устройствами отличаются предельно возможной компактностью и, соответственно, имеют небольшой вес. Благодаря использованию своих рабочих органов, у которых присутствуют незначительные радиальные размеры, и, следовательно, относительно небольшой момент энергии, насосы аксиально-поршневые обеспечивают возможность предельно быстрой корректировки частоты вращения.

Помимо этого, среди преимуществ подобных устройств стоит выделить также то, что они могут работать в условиях высокого давления, отличаются значительной частотой вращения, а также предусматривают возможность изменения рабочего объема.

Корпус

Он сделан в форме спирали с уменьшающимся радиусом, похожим на раковину улитки. Полость этого корпуса не остается одной и той же везде. Площадь проходного сечения увеличивается при приближении к напорному патрубку.

Там, где заканчивается спиральный корпус и начинается напорный патрубок, есть выступающий клин, называемый водорезом.

Он физически разделяет спиральный корпус и напорный патрубок и гарантирует, что жидкость будет покидать насос, а не просто крутиться по кругу в спиральном корпусе.

Расширяющаяся часть спирального корпуса очень важна, т. к. с помощью неё насос создает давление.

Сферы применения

Благодаря своей универсальности, высокой эффективности и надежности центробежные насосы сегодня успешно применяются практически везде. Если говорить о наиболее популярных областях использования насосов центробежного типа, то сюда следует отнести:

  • организацию технического водоснабжения на предприятиях, работающих в различных отраслях промышленности;
  • перекачивание и транспортировку технических жидкостей различного типа между объектами производства;
  • оснащение систем полива растений и подачу воды на животноводческие фермы;
  • организацию системы водоснабжения населенных пунктов;
  • оснащение автономных систем водоснабжения, используемых собственниками загородных домов и дач для бытовых нужд и организации полива растений на приусадебном участке.

Центробежный насос гигиенического исполнения для пищевой, фармацевтической и косметической промышленностей

Для того чтобы понять, в чем состоит причина универсальности и высокой эффективности гидромашин центробежного типа, следует разобраться в том, из каких конструктивных элементов состоит и как работает такое оборудование.

Особенности конструкции и принцип действия

Если рассмотреть устройство центробежного насоса в разрезе, то в конструкции такого оборудования можно выделить следующие элементы.

  • Электродвигатель в устройстве центробежного насоса играет роль приводного элемента. Та часть внутренней конструкции центробежного насоса, где располагается его приводной электродвигатель, тщательно герметизируется, что необходимо для защиты силового агрегата от контакта с перекачиваемой жидкой средой.
  • Вал насоса передает вращение от электродвигателя рабочему колесу.
  • Конструкция центробежного насоса обязательно включает в себя рабочее колесо, на внешней цилиндрической поверхности которого расположены лопатки, перемещающие перекачиваемую жидкую среду по внутренней камере устройства.
  • Подшипниковые узлы обеспечивают легкое вращение вала с зафиксированным на нем рабочим колесом.
  • Уплотнительные элементы защищают узлы внутренней конструкции гидромашины от контакта с перекачиваемой жидкой средой.
  • Корпус насоса, как правило, выполнен в форме улитки и оснащен двумя патрубками – всасывающим и напорным.

Основные части центробежного насоса

Конструктивная схема центробежного насоса, кроме вышеперечисленных деталей, может включать в себя ряд дополнительных элементов:

  1. шланг, по которому перекачиваемая жидкая среда поступает в напорную магистраль;
  2. шланг, по которому жидкость поступает во внутреннюю камеру устройства;
  3. обратный клапан, препятствующий перемещению уже перекачанной жидкой среды в обратном направлении;
  4. фильтр грубой очистки, не дающий твердым включениям, содержащимся в составе жидкой среды, попадать во внутреннюю часть помпы;
  5. вакуумметр, при помощи которого осуществляется контроль за степенью разреженности воздуха в рабочей камере;
  6. манометр, посредством которого можно контролировать давление потока жидкой среды, создаваемого насосным оборудованием;
  7. элементы запорной арматуры, позволяющей регулировать параметры потока жидкой среды, поступающей в насос и выходящей из него.

Устройство насосной части оборудования центробежного типа

Устройство и принцип действия любых центробежных насосов отличаются простотой. Так, принцип действия центробежного насоса заключается в следующем.

  • Жидкая среда, попадающая во внутреннюю рабочую камеру, захватывается лопатками рабочего колеса и начинает перемещаться вместе с ними.
  • Под воздействием центробежной силы жидкая среда отбрасывается к стенкам рабочей камеры, где создается избыточное давление.
  • Находясь под избыточным давлением, жидкая среда выталкивается через напорный патрубок.
  • В тот момент, когда жидкая среда из центральной части рабочей камеры отбрасывается к стенкам, создается разрежение воздуха, что и обеспечивает всасывание новой порции жидкости через входной патрубок.

Принцип действия центробежного насоса

Принцип работы центробежного насоса, описанный выше, относится к моделям как поверхностного, так и погружного типа. Основную функцию центробежного насосного оборудования выполняет рабочее колесо с лопатками. В соответствии с описанным выше принципом действия центробежных насосов такие устройства обеспечивают всасывание перекачиваемой жидкой среды и ее выталкивание в напорную магистраль в постоянном режиме, что гарантирует стабильность параметров создаваемого потока.

Шестеренные гидромотора

Такие двигатели имеют много схожего с шестеренными насосными агрегатами, но с разницей в виде отвода жидкости из подшипниковой зоны. При поступлении рабочей среды в гидромотор начинается взаимодействие с шестерней, что и создает крутящий момент. Простая конструкция и невысокая стоимость технической реализации сделало популярным такое устройство гидромотора, хотя низкая производительность (КПД порядка 0,9) не позволяет применять его в ответственных задачах силового обеспечения. Данный механизм часто используют в схемах управления навесным оборудованием, в станочных приводных системах и обеспечении функции вспомогательных органов различных машин, где номинальная частота рабочего вращения укладывается в 10 000 об/мин.

Устройство и принцип действия поршневых насосов

Поршневым насосом называется возвратно-поступательный насос, у которого рабочие органы выполнены в виде поршней. По количеству поршней эти насосы разделяются на однопоршневые, двухпоршневые, трехпоршневые и многопоршневые. По числу циклов нагнетания и всасывания за один двойной ход поршня различают насосы одностороннего действия, двустороннего действия и дифференциальные.

Схема однопоршневого насоса одностороннего действия представлена на

рис. 3.1.

При движении поршня вправо в левой полости цилиндра и в рабочей камере создается разрежение. За счет разрежения верхний нагнетательный клапан Кн прижимается к седлу, а нижний всасывающий клапан Кв приподнимается, и в создавшийся зазор по всасывающей трубе засасывается жидкость из источника в рабочую камеру. При движении поршня влево в рабочей камере создается повышенное давление, под действием которого всасывающий клапан Кв закрывается, а нагнетательный клапан Кн приподнимается, и жидкость вытесняется из цилиндра в напорный трубопровод.

При многократном возвратно-поступательном движении поршня вода перемещается по всасывающей трубе через цилиндр насоса в нагнетательную трубу и дальше к месту потребления. При этом подача жидкости в нагнетательную линию оказывается неравномерной, что является существенным недостатком насосов одностороннего действия. Для устранения этого недостатка применяются насосы двустороннего действия.

На рис. 3.2 представлена схема насоса двустороннего действия (с двумя рабочими камерами). Процесс всасывания в одной камере идет одновременно с процессом нагнетания в другой.

Для обеспечения равномерности подачи применяются дифференциальные насосы (поршневые и плунжерные). На рис. 3.3 показана схема дифференциального насоса с диаметрами поршней D1 и D2. На всасывающей стороне он работает как насос одностороннего действия, на нагнетательной стороне – как насос двустороннего действия. Его отличительной особенностью является то, что за один оборот вала кривошипа он производит всасывание за один ход поршня, а нагнетание жидкости – в течение обоих ходов поршня, вытесняя ее поочередно из камер А и Б в нагнетательный трубопровод.

По направлению оси движения рабочих органов поршневые (плунжерные) насосы могут быть горизонтальными и вертикальными.

Основные понятия, применяющиеся в теории насосов

На рис. 3.4 показана схема насосной установки, состоящей из насосного агрегата 1, в состав которого входят насос и двигатель (на схеме двигатель не показан), всасывающей трубы 2 и напорного трубопровода 3, отводящего из насоса жидкость к месту назначения.

В нижней части всасывающей трубы имеется сетка 4, предохраняющая всасывающую трубу от попадания посторонних предметов и обратный клапан, необходимый для заливки насоса жидкостью перед пуском (в лопастных насосах) и предупреждающий обратное движение жидкости в случае остановки насоса.

В теории насосов применяется ряд терминов и определений, относящихся к насосам всех типов, в том числе и к поршневым насосам.

В работающем насосе жидкости сообщается дополнительная энергия, которая расходуется на преодоление сопротивлений в напорном трубопроводе и на подъем жидкости в резервуар. Вертикальное расстояние hвс от свободной поверхности водоема до центра насоса называется вакуумметрической высотой всасывания. Потери энергии во всасывающем трубопроводе называются потерями при всасывании Вертикальное расстояние hн от центра насоса до уровня воды в резервуаре называется геодезической высотой нагнетания. Потери энергии в напорной линии называются потерями при нагнетании. Сумма геодезических высот hвс + hн, сложенная с суммой потерь энергии в системе, называется напором насосаН:

Напор, развиваемый насосом, представляет собой количество энергии, сообщаемое насосом единице массы перекачиваемой жидкости. Напор измеряется в метрах столба перекачиваемой жидкости или в единицах давления.

Напор, развиваемый работающим насосом, можно определить также по формуле (7.9) с использованием показаний вакуумметра и манометра, которыми обычно оборудуются насосные установки (рис. 3.4):

hм – показание манометра, выраженное в метрах столба перекачиваемой жидкости;

hв – показание вакуумметра, выраженное в метрах столба перекачиваемой жидкости;

Δh – вертикальное расстояние между точками присоединения манометра и вакуумметра, м;

wн, wв – скорости в нагнетательной и всасывающей линиях (в местах присоединения манометра и вакуумметра), м/с;

Одним из основных технических показателей насоса является также давление насоса р:

Напор насоса Н и давление насоса р связаны между собой зависимостью

Конструкция

Насос состоит из паровой и гидравлической частей. Первая служит приводом, вторая является собственно насосом.

Паровая часть состоит из блока паровых цилиндров с золотниковой камерой.

Каждый паровой цилиндр снабжен продувным вентилем для спуска конденсата. На крышке золотниковой камеры установлена масленка, предназначенная для смазки паровой части насоса. При эксплуатации насоса, для обеспечения нормальной смазки внутренних поверхностей трения паровой части, масленки необходимо заполнять маслом каждые 4 часа.

Рис. 3 – масленка

К золотниковой камере прикреплен паровпускной контрфланец, а к паровому блоку паровыпускной. К ним подсоединяются соответствующие трубопроводы.

Гидравлическая часть состоит из единого блока цилиндров. Блок отлит совместно с клапанными коробками, и имеет фланцы для присоединения входного и выходного трубопроводов.

Рис. 4 – Гидравлическая часть насоса

Паровая и гидравлическая части насоса соединится между собой средником.

Рис. 5 – средник

Нерегулируемые пластинчатые насосы

В нерегулируемых насосах отсутствует возможность изменения рабочего объема. Подачу таких насосов можно регулировать путем изменения частоты вращения приводного двигателя или использовать дроссельное регулирование гидропривода.

//www.youtube.com/embed/P_cCwSbwusA

Устройство пластинчатого насоса двукратного действия

Внутренняя поверхность статора 1 имеет овальную форму. Ротор 2 установлен соосно статору. В пазах 3 ротора установлены пластины 4, которые могут свободно перемещаться внутри пазов. При вращении ротора пластины за счет центробежной силы пластины прижимаются к поверхности статора образуя рабочие камеры. В связи с тем, что внутренняя поверхность статора имеет овальную форму при вращении ротора объем рабочих камер будет изменяться. В зонах 6 и 7 увеличения объема камеры выполнено отверстие для всасывания рабочей жидкости, в зонах 5 и 8 уменьшения объема камеры – отверстие для нагнетания.

В насосах двойного действия устанавливается четное число пластин (не менее 8).

Расчет рабочего объема пластинчатого насоса двойного действия

Рабочий объем насоса определяется минимальным Rc1 и максимальным радиусами Rc2 внутренней поверхности статора, толщиной ∆ и количеством z пластин, а также углом их наклона ξ.

Вычислить рабочий объем насоса двойного действия можно по формуле:

Подача пластинчатого насоса

Подача объемного насоса – это произведение его рабочего объема на частоту вращения приводного двигателя.

Q = V · n

Принцип работы пластинчатого насоса однократного действия

Пластинчатый насос однократного действия показан на рисунке.

Ротор 1 установлен в статоре 2 с эксцентриситетом. В роторе 1 в радиальном направлении выполнены пазы 3, в которых установлены подвижные пластины 4. При вращении ротора пластины под действием центробежной силы прижимаются к цилиндрической поверхности статора. За счет эксцентриситета между осями вращения ротора и статора обеспечивается изменение объемов рабочих камер.

В зоне 6 увеличения объема камеры происходит всасывание рабочей жидкости, зоне 5 уменьшения – нагнетание.

В насосах одинарного действия используется нечетное число пластин (не менее 3).

Расчет рабочего объема пластинчатого насоса одинарного действия

Рабочий объем насоса зависит от радиусов ротора r статора R и эксцентриситета e.

Эти величины связаны зависимостью:

e = R – r – a

где a – минимальный зазор между ротором и статором.

Максимальный рабочий объем пластинчатого насоса одинарного действия можно определить по формуле:

Если полости под пластин при их выдвижении соединяются с линией всасывания, а при задвижении – с линией нагнетания, то рабочий объем такого насоса можно определить по формуле:

∆ – толщина пластин z – количество пластин b – ширина статора

Для точного определения объема рабочей камеры необходимо учесть закон перемещения пластин в роторе во время его вращения. Уточненная формула для определения рабочего объема однократного пластинчатого насоса выглядит следующим образом:

Значение коэффициента k будет зависеть от количества пластин в насосе.

В пластинчатых насосах однократного действия нагрузки неравномерны, сила давления действует на ротор только со стороны полости нагнетания. По этой причине насосы однократного действия предназначены для работы на давлении до 12 МПа. Эта проблема устранена в насосах двойного действия, где действие сил давления на ротор уравновешено.

Преимущества и недостатки

Поршневой жидкостный насос характеризуется достаточно большим количеством достоинств и недостатков. К плюсам можно отнести:

  1. Простота конструкции. Как ранее было отмечено, подобные поршневые насосы были изготовлены еще несколько десятилетий назад и конструктивно они изменились несущественно.
  2. Высокая надежность, которую можно связать с простотой механизма и применением высококачественных материалов. Износостойкие материалы могут выдерживать длительное механическое воздействие.
  3. Возможность работы с различными носителями. Широкая область применения определена тем, что применяемые материалы не реагируют на воздействие различных химических веществ.

Есть и несколько серьезных недостатков. Примером можно назвать невысокую производительность. Подобные модели в меньшей степени подходят для перекачивания большого количества жидкости. Кроме этого, конструкция не подходит для продолжительной работы, так как активные элементы быстро изнашиваются и теряют свои эксплуатационные характеристики.

Принцип работы гидромотора

Основная задача агрегата заключается в обеспечении процесса преобразования энергии циркулирующей жидкости в механическую энергию, которая, в свою очередь, передается через вал исполнительным органам. На первом этапе работы гидромотора происходит поступление жидкости в паз распределительной системы, откуда она переходит в камеры блока цилиндров. По мере наполнения камер увеличивается давление на поршни, в результате чего формируется и крутящий момент. В зависимости от конкретного устройства гидромотора, принцип действия системы на этапе преобразования силы давления в механическую энергию может быть разным. Например, крутящий момент в аксиальных механизмах образуется за счет действия сферических головок и гидростатических опор на подпятниках, через которые и начинается работа блока цилиндров. На конечном этапе завершается цикл нагнетания и вытеснения жидкостной среды из цилиндрической группы, после чего поршни начинают обратное действие.

Тип присоединения вала

Есть 2 способа предать вращения от двигателя к насосу: через муфту или напрямую.

Если насос и двигатель – это две отдельные машины, то они должны быть соединены муфтой.

Соединение муфтой

Муфты бывают разных форм, размеров и исполнений. И одно общее требование к ним – обеспечение правильной целостности валов, иначе без них обеспечение целостности было бы очень изощренным процессом.

Для облегчения и поддержания целостности, двигатель и насос установлены на общей опоре – опорной плите.

Или, в случае с вертикальными установками, двигатель расположен на раме.

Такой вид соединения двигателя и насоса называется муфтовым. Для больших мощных установок и насосов с разборным корпусом соединение через муфту единственно возможное.

Второй способ соединения – прямой. Двигатель и насос находятся на общем валу  с колесом, расположенном консольно на другой стороне вала двигателя. В этом случае установка не требует муфты или сложных процедур по поддержанию целостности.

Тем не менее, из-за того, что двигатель и насос расположены на одном валу, поддерживаемые лишь подшипниками двигателя, этот способ подходит только для маленьких и средних насосов с торцевым всасыванием.

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector