Свойства и характеристики сплавов пермаллоя

Экранирование кабелей

Защита от магнитного поля необходима при прокладке кабелей. Электрические токи, наводящиеся в них, могут быть вызваны включением бытовой техники в помещении (кондиционеры, люминесцентные светильники, телефоны), а также лифтов в шахтах. Особенно большое влияние эти факторы оказывают на цифровые системы связи, работающие по протоколам с широкой полосой частот. Это связано с малой разницей между мощностью полезного сигнала и помехами в верхней зоне спектра. Кроме этого, электромагнитная энергия, которую излучают кабельные системы, неблагоприятно воздействует на здоровье персонала, работающего в помещении.

Между парами проводов возникают перекрестные наводки, обусловленные присутствием емкостной и индуктивной связи между ними. Электромагнитная энергия кабелей также отражается из-за неоднородностей их волнового сопротивления и ослабляется в виде тепловых потерь. В результате затухания мощность сигнала в конце протяженных линий падает в сотни раз.

В настоящее время в электротехнической промышленности практикуется 3 метода экранирования кабельных трасс:

  • Применение цельнометаллических коробов (из стали или алюминия) или установка металлических вставок в пластиковые. При росте частоты поля экранирующая способность алюминия снижается. Недостатком также является дороговизна коробов. Для длинных кабельных трасс существует проблема обеспечения электрического контакта отдельных элементов и их заземления для обеспечения нулевого потенциала короба.
  • Использование экранированных кабелей. Этот метод обеспечивает максимальную защиту, так как оболочка окружает непосредственно сам кабель.
  • Вакуумное напыление металла на ПВХ-канал. Такой способ малоэффективен на частотах до 200 МГц. «Гашение» магнитного поля меньше в десятки раз по сравнению с укладкой кабеля в металлические короба из-за высокого удельного сопротивления.

4.5. Металлические магнитно-твердые материалы

По составу, состоянию и способу получения магнитно-твердые материалы подразделяются на:

  1. легированные стали, закаливаемые на мартенсит;
  2. литые магнитно-твердые сплавы;
  3. магниты из порошков;
  4. магнитно-твердые ферриты;
  5. пластически деформируемые сплавы и магнитные ленты.

Характеристиками материалов для постоянных магнитов служат коэрцитивная сила, остаточная индукция и максимальная энергия, отдаваемая магнитом во внешнее пространство. Магнитная проницаемость материалов для постоянных магнитов ниже, чем МММ, причем чем выше коэрцитивная сила, тем меньше магнитная проницаемость.

4.5.1. Легированные стали, закаливаемые на мартенсит

Данные стали являются наиболее простым и доступным материалом для постоянных магнитов. Они легируются вольфрамом, хромом, молибденом и кобальтом. Величина Wм для мартенситных сталей составляет 1–4 кДж/м3. В настоящее время мартенситные стали имеют ограниченное применение из-за невысоких магнитных свойств, но полностью от них не отказываются, т.к. они дешевы и допускают механическую обработку на металлорежущих станках.

4.5.2. Литые магнитно-твердые сплавы

Большую магнитную энергию имеют тройные сплавы Al-Ni-Fe, которые раньше называли сплавами альни. При добавлении кобальта или кремния в эти сплавы их магнитные свойства повышаются. Недостатком этих сплавов является трудность изготовления из них изделий точных размеров вследствие хрупкости и твердости их, допускающих обработку только путем шлифовки.

4.5.3. Магниты из порошков

Необходимость получения особенно мелких изделий со строго выдержанными размерами обусловила привлечение методов порошковой металлургии для получения постоянных магнитов. При этом различают металлокерамические магниты и магниты из зерен порошка, скрепленных тем или иным связующим (металлопластические магниты).

4.5.4. Пластически деформируемые сплавы и магнитные ленты

К таким сплавам относятся викаллой, кунифе, кунико и некоторые другие. Основные представления об этих сплавах приведены в табл.4.2.

Таблица 4.2.

Марка сплава

Хим. Состав %, ост. Fe

Вr, Тл

Нс, кА/м

Wм, КДж/м3

Викаллой I

51-54 Со 10-11.5 V

0.9

24

4

Викаллой II

51-54 Со 11.5-13 V

0.9-0.95

30-28

8-14

Кунифе I

60Cu,20Ni

0.54-0.6

27-28

4-7.4

Кунифе II

50Cu,20Ni 2.5Co

0.73

21

2.8-3.2

Кунико I

50Cu,21Ni, 29Co

0.34

53-57

3.2-4

Кунико II

35Cu,41Co

0.53

36

4

4.1. Классификация веществ по магнитным свойствам

По реакции на внешнее магнитное поле и по характеру внутреннего магнитного упорядочения все вещества в природе можно разделить на пять групп:

  • диамагнетики;
  • парамагнетики;
  • ферромагнетики;
  • антиферромагнетики;
  • ферримагнетики.

Диамагнетики – магнитная проницаемость m меньше единицы и не зависит от напряженности внешнего магнитного поля.

Диамагнетизм обусловлен небольшим изменением угловой скорости орбитального вращения электрона при внесении атома в магнитное поле.

Диамагнитный эффект является универсальным, присущим всем веществам. Однако в большинстве случаев он маскируется более сильными магнитными эффектами.

К диамагнетикам относят инертные газы, водород, азот, многие жидкости (вода, нефть), ряд металлов (медь, серебро, золото, цинк, ртуть и др.), большинство полупроводников и органических соединений. Диамагнетики – все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

Внешним проявлением диамагнетизма является выталкивание диамагнетиков из неоднородного магнитного поля.

Парамагнетики – вещества с m больше единицы, не зависящей от напряженности внешнего магнитного поля.

Внешнее магнитное поле вызывает преимущественную ориентацию магнитных моментов атомов в одном направлении.

Парамагнетики, помещенные в магнитное поле, втягиваются в него.

К числу парамагнетиков относятся: кислород, окись азота, щелочные и щелочно-земельные металлы, соли железа, кобальта, никеля и редкоземельных элементов.

Парамагнитный эффект по физической природе во многом сходен с дипольно-релаксационной поляризацией диэлектриков.

К ферромагнетикам относят вещества с большой магнитной проницаемостью (до106), сильно зависящей от напряженности внешнего магнитного поля и температуры.

Ферромагнетикам присуща внутренняя магнитная упорядоченность, выражающаяся в существовании макроскопических областей с параллельно ориентированными магнитными моментами атомов. Важнейшая особенность ферромагнетиков заключается в их способности намагничиваться до насыщения в слабых магнитных полях.

Антиферромагнетиками являются вещества, в которых ниже некоторой температуры Т° спонтанно возникает антипараллельная ориентация магнитных моментов одинаковых атомов или ионов кристаллической решетки

При нагревании антиферромагнетик переходит в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Ce, Nd, Sm, Tm и др.)

К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Магнитная проницаемость у них высока и сильно зависит от напряженности магнитного поля и температуры.

Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом – различные оксидные соединения, а главный интерес представляют ферриты.

Диа-, пара- и антиферромагнетики можно объединить в группу слабомагнитных веществ, тогда как ферро- и ферримагнетики представляют собой сильномагнитные материалы и представляют наибольший интерес.

Производство металла

Следует начать с того, что пермаллой достаточно сложен в производстве, цена на изделия из данного металла устанавливается, как правило, за килограмм или тонну. Чем тоньше прокатные листы, и чем более сложной обработке подвергся металл, тем выше итоговая стоимость. Ленты из ходовых сплавов 50Н и 79НМ стоят примерно 2500–3000 руб. за кг. Помимо этого пермаллой продают в виде прутов, листов и порошка.

Свойства пермаллоя существенно зависят от качества термической обработки металла и наличия в составе примесей. Первоначально высоконикелевые сплавы получались в два этапа. Сначала шло нагревание сплава до температуры 900º, далее он выдерживался в таком состоянии 1 час, а затем шло постепенное охлаждение на 100º в час. Второй этап производственного процесса начинался с повторного нагревания, в этот раз до температуры 600 ºC. После шла воздушная закалка металла на медной плите. Исследования пермаллоя выявили наличие зависимости между магнитными свойствами и скоростью нагрева и охлаждения сплава. С увеличением темпов остывания металла его характеристики снижаются.

Впоследствии выяснилось, что для классического пермаллоя с содержанием никеля 79% двойная термическая обработка вполне может быть заменена одинарной. При таком методе нагревание происходит в камерах заполненных чистым сухим водородом до температуры 1300° с последующим продолжительным отпуском до 400-500. Термическая обработка сплавов с меньшим содержанием никеля проще, поэтому они стоят дешевле. Стоит отметить, что без термической обработки магнитная проницаемость у пермаллоев хуже, чем у очищенного железа.

После проката металлические пластины и ленты подвергаются ещё одному этапу обработки – отжигу. Готовый продукт не должен иметь тёмных пятен, окислов и разноцветных участков. Механические повреждения должны отсутствовать.

После отжига пермаллоивые пластины отправляются на магнитные испытания, где их свойства проверяются на соответствие действующим стандартам.

Состав

Пермаллой относится к прецизионным сплавам, что означает строгое нормирование химического состава и его физико-механических характеристик. Состав этой группы материалов зафиксирован в ГОСТ 10994-74, там же указаны правила маркировки. Марка состоит из литерных обозначений легирующих компонентов и стоящих перед ними чисел, отражающих их массовую долю в сплаве.

Соответствие между буквами и химическими элементами следующее:

  • Г – марганец;
  • Х – хром;
  • Н – никель;
  • Д – медь;
  • А – азот;
  • Ф – ванадий;
  • Б – ниобий;
  • В – вольфрам;
  • Е – селен;
  • К – кобальт;
  • Л – бериллий;
  • М – молибден;
  • Р – бор;
  • Т – титан;
  • Ю – алюминий;
  • Ц – цирконий;
  • П – фосфор;
  • Ч – редкоземельные металлы.

Основным рабочим составом пермаллоя служит марка 79HM, у неё наибольшая магнитная проницаемость. В сплаве высокое содержание никеля и молибден в качестве легирующего компонента, который делает пермаллой более технологичным. Упрощается производственный процесс, материал становится более устойчив к механическим воздействиям, вырастает удельное электросопротивление, улучшается магнитная проницаемость соединения. У добавки молибдена есть отрицательный эффект – уменьшение индукции насыщения. Похожими особенностями в качестве улучшающего компонента обладает хром.

Марганец и кремний добавляют для увеличения удельного сопротивления. В сплавах с большой долей никеля для повышения электросопротивления и снижения темпа охлаждения в качестве легирующих добавок применяют хром, кремний, медь, ну и молибден, про который уже говорилось ранее.

Область применения

Самое широкое применение состав получил в виде проволоки. Её применяют в качестве нагревательных элементов, резисторов, компенсационных проводов, реостатов.

Термопара хромель алюмель

Алюмель в такой паре является отрицательным, а хромель положительным элементом. Такое сочетание имеет термоэлектрические характеристики близкие к линейной. Это позволяет показывать высокую чувствительность и высочайшую точность измерений.

Пара хромель алюмель относится к датчикам общего применения. Изделия обычно имеют вид щупов. Применяются для измерения показателей в инертных и окислительных средах. Выгодно отличаются от других пар при работе в среде высокой радиоактивности.

Изделия из сплавов хромель-алюмель могут применяться практически в любой сфере от промышленности до лабораторий. Алюмель также применяется как термоэлектродный провод в конструкции измерительных приборов.

Термопара хромель-копель

Этот элемент используется для бесконтактного метода измерения достаточно высоких температур, т. е. без непосредственного контакта термоэлектрода с источником тепла. Применяются для постоянного мониторинга теплового режима на промышленности и в лабораторных исследованиях. Рабочая температура такой пары колеблется в зоне от 200 °С до 600 °С.

Это относительно простая и надежная в использовании термопара, которая показывает достаточно высокую степень точности измерений. Отличается высокой жаропрочностью, прекрасными термоэлектрическими свойствами. Может быть использована в различных средах и сферах деятельности. Даже чувствительность к деформациям нельзя в полной мере назвать недостатком, ведь она никак не сказывается на точности и качестве измерений.

https://youtube.com/watch?v=dYN_jx24yGs

Таким образом, хромель широко применяется в различных областях науки и производства, благодаря своим характеристикам и приемлемой стоимости.

Состав – пермаллой

Состав пермаллоев техническими условиями точно не оговаривается, марка указывает лишь примерный состав сплава, но магнитная характеристика должна быть обеспечена.

Влияние химического состава железо-никелевых порошков на электромагнитные свойства.

Состав пермаллоя, широко приме-няемого в качестве низкочастотного магнитомягкого материала, характеризуется различным соотношением металлов. Кроме того, эти порошки, обладая более высокой магнитной проницаемостью по сравнению с первичным карбонильным железом, имеют также и большие потери, что объясняется главным образом неоднородностью и значительными размерами частиц порошка.

Состав пермаллоев техническими условиями точно не оговаривается, марка указывает лишь примерный состав сплава, но магнитная характеристика должна быть обеспечена.

При введении в состав пермаллоя меди до 5 % или хрома до 3 % удается значительно повысить его электрическое сопротивление. Пермаллой в слабых полях обладает проницаемостью в 15 – 20 раз выше, чем обычная электротехническая сталь.

Зависимости магнитной индукции.

Для придания сплавам необходимых свойств в состав пермаллоев вводятся добавки.

Зависимости магнитной индукции от напряженности магнитного поля для электротехнической стали.

Для придания сплавам необходимых свойств в состав пермаллоев вводятся добавки. Молибден и хром повышают удельное сопротивление и начальную магнитную проницаемость пермаллоев и уменьшают чувствительность к деформациям. К сожалению, одновременно с этим снижается индукция насыщения.

Большое значение для современной электротехники имеет никелевая сталь, называемая пермаллоем, которая при определенном проценте содержания в ней никеля приобретает высокую магнитную проницаемость. В состав пермаллоя входит до 78 5 % никеля. Различные типы пермаллоя могут содержать небольшой процент меди, хрома, молибдена, марганца, и других примесей. Высокую магнитную проницаемость гшрмаллой приобретает после специальной термической обработки в пламени водорода.

Пермаллой содержит до 79 % никеля. Пермаллой в слабых полях обладает проницаемостью в 15 – 20 раз выше, чем сталь. Для увеличения сопротивления в состав пермаллоя вводят хром или медь. У сплавов типа пермаллоя магнитная проницаемость резко уменьшается при возрастании частоты. Удельные потери листового пермаллоя относительно малы и составляют десятые доли вт / кг при частоте 50 гц и амплитуде магнитной индукции 10000 гс.

В реальных пленках наблюдают локальные изменения направления оси Л, вызванные дисперсией анизотропии ба, возникающей вследствие магнитострикционной, кристаллографической анизотропии и анизотропии формы. Для ее компенсации определен состав пермаллоя ( Ni – 81 %, Fe-19 %), характеризующийся нулевой магнитострикцией. Кристаллографическая анизотропия обусловлена стремлением спинов электронов устанавливаться в направлении кристаллографических осей, энергия намагничивания вдоль которых минимальна. При 72 % Ni и 28 % Fe она близка к нулю. На практике с целью минимизации магнитострикциокной и кристаллографической анизотропии применяют сплавы, содержащие 80 % Ni. Анизотропия формы связана с неоднородностью размагничивающего поля, действующего в плоскости пленки и зависящего от геометрических размеров дискретных элементов. Установлено, что ее влияние на положение оси Л будет минимальным, если пленки имеют большие размеры в направлении легкого намагничивания.

При электрохимическом осаждении, изменяя плотность тока, получают размеры зерен золота в пределах от 100 до 800 А. Это позволяет изготовить ЦМП с повышенной анизотропией и создать ЗЭ с неразрушающим считыванием информации. В пределах толщины от 0 до 400 А подслой уменьшает их значения, не влияя на состав пермаллоя. Малая проводимость подслоя уменьшает влияние вихревых токов на характеристики матриц на подложках высокой проводимости.

4.6. Ферриты

Это соединения оксида железа Fe2O3 с оксидами других металлов: ZnO, NiO. Ферриты изготавливают из порошкообразной смеси оксидов этих металлов.

Название ферритов определяется названием одно-, двухвалентного металла, оксид которого входит в состав феррита:

Если ZnO – феррит цинка

NiO – феррит никеля.

Ферриты имеют кубическую кристаллическую решетку, подобную решетке шпинели, встречающейся в природе: MgO·Al2O3. Большинство соединений указанного типа, как и природный магнитный железняк FeO·Fe2O3, обладает магнитными свойствами. Однако феррит цинка и феррит кадмия являются немагнитными. Исследования показали, что наличие или отсутствие магнитных свойств определяется кристаллической структурой этих материалов, и в частности расположением ионов двухвалентных металлов и железа между ионами кислорода. В случае структуры обычной шпинели, когда в центре кислородных тетраэдров расположены ионы Zn++ или Cd++, магнитные свойства отсутствуют. При структуре так называемой обращенной шпинели, когда в центре кислородных тетраэдров расположены ионы Fe+++, материал обладает магнитными свойствами. Ферриты, в состав которых кроме оксида железа входит только один оксид, называется простым. Химическая формула простого феррита:

MeOxFe2O3 или MeFe2O4

Феррит цинка – ZnFe2O4, феррит никеля – NiFe2O4.

Не все простые ферриты обладают магнитными свойствами. Так CdFe2O4 является немагнитным веществом.

Наилучшими магнитными характеристиками обладают сложные или смешанные ферриты, представляющие твердые растворы одного в другом. В этом случае используются и немагнитные ферриты в сочетании с простыми магнитными ферритами. Общая формула широко распространенных никель-цинковых ферритов имеет следующий вид:

mNiO·Fe2O3 + nZnO·Fe2O3 + pFeO·Fe2O3, (4.8)

где коэффициенты m, n и p определяют количественные соотношения между компонентами. Процентный состав компонентов играет существенную роль в получении тех или иных магнитных свойств материала.

Наиболее широко в РЭА применяют смешанные магнитно-мягкие ферриты: никель-цинковые, марганец-цинковые и литий-цинковые.

Достоинства ферритов – стабильность магнитных характеристик в широком диапазоне частот, малые потери на вихревые токи, малый коэффициент затухания магнитной волны, а также простота изготовления ферритовых деталей.

Недостатки всех ферритов – хрупкость и резко выраженная зависимость магнитных свойств от температуры и механических воздействий.

Магнитное свойство – пермаллой

Магнитные свойства пермаллоев сильно зависят от химического состава и наличия примесей в сплаве. Отрицательно на свойства пермаллоев влияют примеси, которые не образуют твердых растворов со сплавом, такие, как углерод, сера и кислород; кроме того, свойства резко изменяются от режимов термообработки.

Влияние термообработки на начальную прошщае.| Влияние термообработки на максимальную магнитную проницаемость железо-никелевых сплавов.

Магнитные свойства пермаллоя 78 можно объяснять, по-видимому, тем, что этот сплав обладает очень малыми константами магнит-нон анизотропии и магнитострикции.

Магнитные свойства пермаллоя сильно зависят от термической обработки.

Магнитные свойства пермаллоя сильно зависят от термической – обработки.

Кривые намагничивания некоторых ферромагнитных – материалов.

Магнитные свойства пермаллоев очень сильно зависят от содержания никеля и от технологии их изготовления.

Магнитные свойства пермаллоев сильно зависят не только от процентного содержания компонентов в сплаве, но и от технологии изготовления листового материала и сердечников. Ленточный материал изготовляют горяче – и холоднокатаным. Даже при незначительном отступлении от технологии изготовления листового материала ( степени обжатия при прокатке, времени и температуры отжига, скорости изменения температуры при отжиге, состава г4аза, в атмосфере которого производится отжиг) резко изменяются магнитные свойства.

Магнитные свойства пермаллоев меняются под воздействием даже слабых напряжений. При сжимающих напряжениях всего 5 МПа магнитная проницаемость уменьшается в 5 раз, а коэрцитивная сила возрастает в 2 раза.

Магнитные свойства пермаллоя в корне меняются, если его деформировать выше предела его упругости, так что этот материал никоим образом нельзя сгибать. Иначе в результате возникновения дислокаций, поверхностей скольжения и других механических деформаций проницаемость его уменьшается и границы доменов уже будут двигаться не так легко.

Прокатка, резка, штамповка сильно снижает магнитные свойства пермаллоев. Для снятия внутренних напряжений, выжигания углерода, создания крупнозернистости и благоприятной магнитной текстуры ( ориентировости зерен в сплаве) пермаллой подвергают отжигу при температуре 1100 – 1150ЭС в вакууме или в водороде. Хорошие результаты дает медленное охлаждение в магнитном поле.

Магнитные характеристики сплавов Fe-Ni в зависимости от процентного содержания никеля.

Железоиикдлавые сплавы ( пермаллои) дороже стали в 15 – 20 раз, имеют меньшее индукции насыщения, но позволяют получать высокочувствительные магнитные элементы за счет малой коэрцитивной силы и высокой начальной магнитной проницаемости. Магнитные свойства пермаллоя во многом определяются процентным содержанием никеля в сплаве.

Текстура достигается холодной прокаткой, отжигом при Т 1100 С и охлаждением в вакууме или магнитном поле. Магнитные свойства пермаллоев нарушаются при тряске и ударах, поэтому сердечники размещаются в эластичном компаунде, заключенном в пластмассовый корпус, и крепятся в нем с помощью пружин.

Магнитные характеристики сплавов Fe – № в зависимости от процентного содержания никеля.

Химический состав

Стеллиты включают в качестве основных компонентов W, Ni, Mo, Co либо Cr. Доля данных элементов определяется типом сплава. Общей особенностью всех видов является отсутствие железа либо низкое содержание (до 20%) и присутствие углерода. Последний применяется по тому же принципу, что и в высококачественной стали: за счет формирования кристаллической решетки карбидов он обеспечивает твердость сплава. Таким образом, путем варьирования количества углерода меняют свойства материала. Прочие параметры (твердость, магнитные свойства, износостойкость и т. д.) также определяются составом.

Основные элементы представлены Co (47 – 62 либо 30 – 55%), Cr (27 – 33 либо 20 – 35 %), W (4 – 17 либо 9 – 15%), Fe (менее 5%) C (1 – 2,5 либо 1,3 – 2%).

Состав стеллитовых прутков регламентирован ГОСТ 21449-75.

  • ПР-ВЗК на кобальтовой основе (59,19%) включают 28–32% (28,5%) Cr, 4–5% (4,67%) W, 2–2,7% (2,43%) Si, 2% Fe, 1–1,3% (1,46%) C, 0,5–2% Ni 0,07% S, 0,03% P.
  • ПР-ВЗК-Р на той же основе включает то же количество Cr, 7–11% W, 3% Fe, 1,6–2% C, 1,2–1,5% Si, 0,1–2% Ni, 0,3–0,6% Mn, 0,02–0,3% Sb, 0,07% S, 0,02% P.
  • В ВК2 входит 47–53% Co, 27–33% Cr, 13–17% W, 2–3% Ni, 1–2% Si, 1–1,5% Mn, 1,8–2,5% С, 2% Fe.
  • Состав ВК3 представлен 58–62% Co, 28–32% Cr, 4–5% W, 2–3% Ni, 2,5–2,8% Si, 2% Fe, 1–1,5% C.
  • КВ5Х30 включает 58–62% Co, 28–32% Cr, 4,5–5% W, 2–4% Fe, 1–1,5% C, 1–2% Si и столько же Ni. Еще 1,5% составляют примеси.
  • Cтеллит 6 включает Cr (28% массы), W (4,5%), C (1,2%), а также Co и Fe, Mo, Ni, Si, Mn.
  • Тип 1 отличается значительной долей первичных карбидов. В него входит 30% Cr, 13% W, 2,5% C, а также Ni, Fe, Mo, Si, Mn.
  • Тип 12 на Co основе характеризуется большими долей W и содержанием карбидов. Его состав представлен 29% Cr, 8,5% W, 1,8% C и теми же дополнительными компонентами.
  • Тип 21 на той же основе включает легированную матрицу, представленную преимущественно Cr и Mn, помимо Co. Распределение и особенности карбидов определяются историей обработки, а, следовательно, и свойства. В любом случае их доля низка. Состав данного типа сплава представлен 27% Cr, 2,5% Ni, 5,5% Mo, 1,5% Fe, а также C, Si, B, Mn.
  • ПР-С27 Сормайт на основе Ni и Fe включает 25–28% (25–31% либо 13–17,5% по другим данным) Cr, 3,3–4,5% (2,5–3,3% либо 1,5–2%) C, 3% Fe, 1,5–2% (3–5% либо 1,3–2,2%) Ni, 1–2% (2,8–4,2% либо 1,5–2,2%) Si, 1–1,5% Mn, 0,2–0,4% (отсутствует) W, 0,08–0,12% Mo, 0,07% S, 0,02% P.

Стеллен имеет кобальтовую основу и включает 20–33% Cr, 4–19% W, 0,1–2,45% C, а также Ni, Fe, Si, Mn, Mo. В цельзит входит 41% Co, 26% Cr, 25% W, 4–6% Fe, 2–8% C. Смена отличается заменой Co на Ni. Его состав представлен 48% Ni, 30% Cr, 20% W, 2% C.

Следует отметить, что существует множество прочих аналогичных сплавов, где кобальт заменен никелем.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий

Adblock
detector