Магнитное дутье при сварке

Размагничивание труб перед сваркой

Размагничивание труб источниками сварочного тока импульсным методом выполняется в следующей последовательности.

1- труба; 2 – сварочный кабель; 3 – сварочный источник питания постоянного тока; 4 – металлическая пластина; 5 – разъемный контакт Рисунок 11.13 – Схема монтажа оборудования для размагничивания труб импульсным методом

  • провести намотку сварочного кабеля (от 18 до 20 витков) на расстоянии от 10 до 20 мм от торца трубы (рисунок 11.13), при этом торцы двух размагничиваемых труб должны находиться на расстоянии не менее 2500 мм;
  • определить исходную величину и направление магнитного поля по периметру трубы в восьми контрольных точках;
  • установить минимальный ток на источнике сварочного тока (в интервале от 30 до 70 А), замкнуть контакт на пластину;
  • измерить величину магнитного поля по периметру трубы в восьми контрольных точках. Если величина магнитного поля не изменилась или увеличилась, необходимо изменить полярность тока на соленоиде;
  • установить максимальный ток на источнике сварочного тока (в интервале от 240 до 300 А), замкнуть контакт на пластину, выдержать в течение 6-12 с, затем разомкнуть контакт и отключить источник питания;
  • выполнить демонтаж размагничивающих обмоток (соленоида).

Размагничивание соединений перед сваркой источниками сварочного тока компенсационным методом выполняется в следующей последовательности:

  • определить исходную величину и направление магнитного поля по периметру сварного соединения в восьми контрольных точках;
  • провести намотку сварочного кабеля сечением 35; 50 мм 2 на оба конца труб (рисунок 11.14), при этом намотка должна быть в одном направлении, равномерной плотной и однорядной, количество витков, наматываемых на конец трубы с большей величиной магнитного поля, – от 7 до 11, трубы с меньшей величиной магнитного поля – от 3 до 5 витков;
  • подключить сварочный кабель к источнику постоянного тока;
  • включить сварочный источник и постепенно увеличивать величину тока с минимального значения, одновременно контролируя изменение величины магнитного поля;
  • если величина магнитного поля в сварном соединении увеличивается, отключить источник питания и изменить полярность (поменять концы сварочного кабеля на источнике питания);
  • если величина магнитного поля в соединении труб не превышает 20 Гс, приступить к сварке корневого слоя шва, по мере выполнения которого величину тока снижают, одновременно контролируя величину магнитного поля в зазоре труб;
  • отключить источник питания и измерить величину магнитного поля по периметру соединения после сварки корневого слоя шва. Если величина магнитного поля не превышает 20 Гс, провести демонтаж сварочного кабеля, если величина магнитного поля превышает 20 Гс, провести размагничивание перед сваркой последующих слоев шва.

1- труба; 2 – сварочный кабель; 3 – сварочный источник питания постоянного тока Рисунок 11.14 – Схема монтажа оборудования для размагничивания соединений перед сваркой компенсационным методом

Размагничивание соединений перед сваркой источниками сварочного тока при знакопеременном магнитном поле компенсационным методом выполняется в следующей последовательности:

  • определить исходную величину и направление магнитного поля по периметру сварного соединения в восьми контрольных точках;
  • провести размагничивание компенсационным методом аналогично требованиям 11.3.3.2 отдельных участков периметра сварного соединения с наибольшей величиной и одним направлением магнитного поля с последующей сваркой корневого слоя шва на этих участках;
  • изменить полярность тока на источнике питания и выполнить размагничивание участков периметра сварного соединения с другим направлением магнитного поля с последующей сваркой корневого слоя шва на этих участках;
  • отключить источник питания и измерить величину магнитного поля по периметру соединения после сварки корневого слоя шва. Если величина магнитного поля не превышает 20 Гс, провести демонтаж сварочного кабеля, если величина магнитного поля превышает 20 Гс, провести размагничивание перед сваркой последующих слоев шва.

Природа возникновения явления

Процесс формирования дуги выглядит следующим образом:

  1. Сварщик на долю секунды касается электродом металлической заготовки.
  2. В момент контакта происходит короткое замыкание, сопровождающееся протеканием тока большой силы и, как следствие, мощным выделением тепла.
  3. Металл в точке прикосновения плавится. Он становится вязким, тягучим.
  4. В момент отрыва расходника от заготовки за ним тянется капля расплава.
  5. Удлиняясь, она утоньшается с образованием т.н. шейки. В какой-то момент та испаряется и превращается в облако заряженных частиц. Одновременно вследствие высокой температуры в данной зоне ионизируется воздух или защитный газ.
  6. Под действием электрического поля носители отрицательного заряда устремляются к аноду, положительного — к катоду. Начинается процесс протекания тока в плазме.


В момент контакта происходит короткое замыкание, металл в точке прикосновения плавится.

Каждый этап длится миллисекунды, разряд возникает практически мгновенно. Далее ток поддерживается эмиссией электронов на катоде. По пути к аноду они ионизируют газ и пары металла, увеличивая число свободных носителей заряда.

При каких условиях начинается горение

Электрическая сварочная дуга возникает при силе тока от 10 до 1000 А и разности потенциалов 15-40 В. В холодном воздухе розжиг затрудняется, поскольку тот слабо ионизируется. В таких условиях прогревают заготовку либо подают теплый защитный газ.

Источники питания дуги

Для создания разряда используют и постоянное, и переменное напряжение. В первом случае сварной шов получается более качественным, а металл разбрызгивается меньше.

Ток из сети 220 В преобразуется трансформатором, дающим на выходе 15-40 В.

С целью уменьшения его габаритов в современных сварочных аппаратах используют схему, состоящую из таких узлов:

  1. Входного выпрямителя.
  2. Инвертора — электронного устройства с быстропереключающимися транзисторами, управляемого микросхемой.
  3. Трансформатора.
  4. Выходного выпрямителя.


Инвертор является источником питания дуги.

Инвертор превращает постоянный ток в переменный с частотой до 80 кГц. Это позволяет не только уменьшить размеры трансформатора, но и повысить КПД аппарата.

Параметры источника подбирают с учетом способа выполнения работ. Например, при ручной сварке длина дуги колеблется, поэтому нужен аппарат с крутопадающей вольт-амперной характеристикой. Благодаря ему разряд при растягивании не гаснет, а при его укорочении ток не становится слишком большим.

При сварке плавящимся электродом с него стекают на заготовку капли металла. В такие моменты возникает ток короткого замыкания, превышающий дуговой на 20%-50%. Он пережигает образовавшийся металлический мостик, и плазменный разряд образуется снова. Эти колебания происходят в короткие моменты времени, поэтому источник должен быстро реагировать на них, стабилизируя разность потенциалов.

Чем и как определяется мощность

Плазма представляет собой проводник с протекающим по нему электрическим током. Значит, на вопрос о том, чем определяется мощность сварочной дуги, дается тот же ответ, что и для любого резистора: напряжением и амперажем. Скорость выделения тепла равна произведению этих величин.


Мощность варьируют силой тока, которая зависит от длины дуги.

Чаще мощность варьируют силой тока, которая, в свою очередь, зависит от длины дуги. Одновременно меняется и температура нагрева металла, а с ней и скорость выполнения работ.

Разновидности сварочной дуги

Различают 2 типа:

  1. Разряд прямого действия. Возникает между проводящим стержнем (направлен параллельно ему) и заготовкой (перпендикулярно).
  2. Косвенного действия. Возникает между 2 электродами, расположенными под углом 40-60°.


Различают несколько разновидностей сварочной дуги.

Виды плазмы в зависимости от состава:

  1. Открытая. Ток протекает в смеси из воздушных газов, паров металла и обмазки.
  2. Закрытая. Дуга находится под флюсом, его пары совместно с частицами металла образуют ионизированную среду.
  3. Состоящая из 1 или нескольких защитных газов.

Используются электроды из следующих материалов:

  • вольфрама;
  • графита (угольные);
  • стали с обмазкой из ионизирующих веществ (плавящиеся).

Дуга может быть 3-фазной. Для этого требуются подключение к соответствующей сети и 2 токопроводящих стержня. К каждому из них подсоединяется по фазе, третья — к заготовке.

Магнитное дутье при сварке способы устранения

Корзина

Во время проведения сварочных работ, особенно при ремонте трубопроводов, как правило, наблюдается эффект «магнитного дутья». «Магнитное дутье» — это эффект, возникающий при сварке намагниченных труб. От действия магнитного поля затрудняется поджиг дуги, нарушается стабильность ее горения, происходит отклонение ее на одну из свариваемых кромок, что приводит к выбросу металла из сварочной ванны.

В последнее время внутритрубная диагностика магнитными зондами стала чрезвычайно популярна, а это, как, впрочем, и магнитопорошковая дефектоскопия, служит причиной образования магнитных полей в трубах. Нахождения же труб вблизи линии электропередач, а так же электрохимзащита труб ведут к появлению эффекта намагниченности.

В отечественной промышленности выпускают специальные устройства для размагничивания трубопроводов. Например: установка АУРА или прибор ЛАБС. Но они дороги и требуют специально обученного персонала для выполнения этих работ, а это уже является недостатком, как, впрочем, и громоздкость этих устройств, необходимость во внешнем источнике питания, что в совокупности с уже вышеперечисленными недостатками создает острую необходимость в более совершенной и универсальной системе для борьбы с намагниченностью труб. Именно такой системой является комплект магнитных компенсаторов МС-1. Использование этого комплекта возможно в любых климатических зонах на стальных трубопроводах, на любых толщинах металла, при сварке труб. Допускается его использование при сварке труб с диаметром от 100 мм, верхний предел не ограничен.

Принцип работы МС-1 заключается в создании встречного магнитного потока, компенсирующего остаточную намагниченность изделия. Комплект компенсаторов состоит из двух П-образных элементов, которые представляют собой стальной магнитопровод с врощенными в него магнитами высокой мощности, помещенный в защитную оболочку, что защищает магнит от коррозии и механических разрушений, а так же от высоких температур. Устанавливают магнит таким образом, что он является мостом между трубами. Размеры магнита подобраны таким образом, чтобы он не мешал установленному на трубу наружному центратору. При установке магнита МС-1 на трубу его направленный магнитный поток компенсирует магнитное поле трубы на участке 200-400 мм вдоль стыка в оба направления. Размеры рабочей зоны МС-1 зависят от степени намагниченности трубы. Комплект магнитных компенсаторов МС-1 не потребляет электроэнергию, и не требует источников питания. Порядок постановки прихваток при использовании МС-1 не отличается от обычного способа, принятого на предприятии. Исходя из того что трубы имеют неравномерную намагниченность по длине стыка, необходимость установки МС-1 определяется самим сварщиком в процессе постановки прихваток. Намагниченность можно определить по появлению «магнитного дутья» или используя магнитометр (поставляется по желанию заказчика) любого типа, или просто приложив отрезок проволоки диаметром 3-4 мм и длиной 20-30 мм (огарок электрода) на кромку стыка в месте будущей прихватки. Если проволока (огарок электрода) примагнитится к трубе, то остаточная намагниченность присутствует. Обычно после установки прихваток явление «магнитного дутья» исчезает, но при сильной намагниченности трубы выполнение корневого прохода и заполнения возможно с применением МС-1.

источник

Почему образуются деформации и напряжения

Деформации при сварке появляются из-за вызванных разными факторами внутренних напряжений. Причины таких нарушений условно разделяют на две большие категории: основные (неизбежные), которые всегда присутствуют при сварочных работах и сопутствующие, которые подлежат устранению.

Причины неизбежные

Группу основных составляют следующие причины возникновения напряжений и деформаций при сварке:
структурные видоизменения, провоцирующие развитие сжимающих и растягивающих напряжений. Довольно часто при охлаждении изделий, выполненных из высокоуглеродистых и легированных стальных сплавов при нарушается зернистая структура металлов и размеры самих деталей.

В результате меняется первоначальный объем металла, что собственно и поднимает внутреннее напряжение;

  • неравномерный прогрев. В процессе сварки нагревается только задействованный участок металла, при этом он расширяется и оказывает влияние на менее нагретые слои. Образующаяся вследствие прерывистого прогрева высокая концентрация напряжений в сварных соединениях в основном зависит от показателей линейного расширения, степени теплопроводности и температурного режима. Чем выше эти показатели, тем меньшей является теплопроводность металла и соответственно возрастают риски неточностей сварочном шве;
  • литейная усадка, когда объем металла заметно уменьшается из-за его кристаллизации. Объясняется это тем, что в расплавленном металле под влиянием усадки образуется сварочное напряжение, которое может быть одновременно поперечным и продольным.

Не только внешние силовые воздействия способны спровоцировать напряжение при сварке. Металлическим сплавам характерны также свои собственные напряжения и деформации, которые разделяются на остаточные и временные. Первые возникают вследствие пластичной деформации и даже после охлаждения конструкции они в ней остаются. Когда появляются временные сварочные деформации? Непосредственно в процессе сваривания в прочно зафиксированном изделии.

Сопутствующие причины

Кроме основных существуют также побочные причины возникновения деформаций при сварке. К таковым относят:

  • отклонение от технологических нормативов, например, использование не подходящих для конкретного случая электродов, нарушение режимов сварки, недостаточная подготовка изделия к сварочному процессу и другие;
  • несоответствие конструктивных решений: частое пересечение между собой сварных соединений или недостаточное расстояние между ними, неточно подобранный тип шва и т. д.;
  • отсутствие опыта и соответственных знаний у сварщика.

Что из перечисленного вызывает концентрацию напряжений в сварных соединениях? Любое неправильное действие приводит к технологическим дефектам шва, в частности к появлению трещин, пузырей, непроваров и других браков.

Как предотвратить возникновение

Для снижения величины сварочных напряжений и деформаций при подготовке к работе специалисты рекомендуют:

  • при проектировании выполнять расчет деформаций для правильного формирования сечения сварочных швов, припусков для усадки;
  • располагать швы симметрично по отношению к осям узлов;
  • не проектировать соединения так, чтобы больше трех швов пересекались в одной точке;
  • прежде чем приступить к сварке, проверить, нет ли отклонений величины зазоров на стыках от расчетных величин;
  • не проводить швы через места концентрации напряжений.

Для уменьшения деформаций и напряжений во время работы применяют следующие приемы:

  • создавать на соединениях очаги дополнительной деформации с действием, противоположным сварке;
  • швы длиной больше 1 м разбивать на отрезки длиной 10 — 15 см и сваривать обратноступенчатым методом;
  • подкладывать под стыки медные или графитовые прокладки для снижения температуры сварочной зоны;
  • соседние швы сваривать так, чтобы деформации компенсировали друг друга;
  • для сварки деталей из вязкого металла применять технологии, которые обеспечивают снижение величины остаточных явлений;
  • делать размер швов меньше, если это допускается условиями эксплуатации;
  • по возможности выполнять соединения с меньшим числом проходов;
  • при наложении двухсторонних швов слои наплавлять попеременно с каждой стороны;
  • предварительно выгибать края заготовок в направлении, противоположном действию деформации, когда сварка завершится, они вернутся в исходное положение;
  • не делать много прихваток;
  • для ускорения сборки и снижения величины деформаций небольшие узлы сваривать в кондукторах.

Влияние структур металла

При сверхбыстром нагреве в любом металле происходят структурные изменения.


Они вызваны тем, что составляющие микроструктуры любого металла имеют различные размеры зерна.

Применительно к нелегированным средне- и низкоуглеродистым сталям (стали с повышенным содержанием углерода, как известно, свариваются плохо), при различных температурах в них могут образовываться, в основном, следующие структуры:

  1. Аустенит — твердый раствор углерода в α-железе. Образуется при температурах нагрева выше 7230С, и существует, в зависимости от процентного содержания углерода в стали, до температур 1100-13500С. Подвижность зерен микроструктуры в таких условиях — высокая, поэтому аустенитные стали довольно пластичны и при медленном охлаждении не обладают значительным уровнем остаточных напряжений. Частично (до 18-20%) аустенит сохраняется и в структуре стали после окончательного охлаждения. Размеры аустенитного зерна составляют 0,27-0,8 мкм.
  2. Карбид железа/цементит. Структура имеет ромбовидную решетку и характеризуется высокой поверхностной твердостью. Размеры зерна находятся в пределах 0,1-0,3 мкм.
  3. Феррит — низкотемпературная, самая мягкая составляющая микроструктуры, образующаяся в процессе сравнительно медленного остывания металла, что и происходит во время выполнения сварки под слоем флюса. Зерна феррита — округлые в плане, размером 0,7-0,9 мкм.
  4. Перлит — структура, которая формируется в процессе остывания металла и представляет собой смесь феррита и цементита. В зависимости от скорости охлаждения перлит может быть зернистым или пластинчатым. В первом случае зерна вытянуты вдоль оси заготовки, во втором — имеют округлую форму. Средний размер частиц перлита находится в диапазоне 0,6-0,8 мкм. При повышенных скоростях охлаждения вместо перлита появляется более тонкая структурная составляющая, которую называют трооститом. Размеры зерна троостита не превышают 0,2 мкм.
  5. Мартенсит — неравновесная структурная составляющая, которая существует только в стали, нагретой до температуры выше 750-9000С (с повышением процентного содержания углерода начало мартенситного превращения сдвигается в область более низких температур). Фиксируется в составе стали лишь при ее ускоренном охлаждении, например, при закалке. Такой мартенсит имеет зерно размером 0,2-2,0 мкм.

Еще более сложным составом отличаются легированные стали, в микроструктуре которых появляются карбиды и нитриды составляющих. Кроме того, на размеры зерен сильно влияют скорость охлаждения различных участков деталей, состав атмосферы, в которой выполняется нагрев, интенсивность диффузии материала сварочных электродов и т.п.

Сущность и главные причины возникновения

Крепкий электроток, текущий по электродуге, выполняя свой магнитное поле. Оно взаимодействует с постоянным полем массивной металлоконструкции. Благодаря этому взаимные действия появляется сила, направленная до центра поля. Если групповой кабель подключен недалеко к месту работы, то эта сила действует вдоль столба и не вызывает ее смещения от вертикали. Впрочем чем дальше подключена масса, тем более вырисовывается поперечная составная часть этой силы. Под ее воздействием электрическая дуга отклоняется в сторону подсоединения. Степень отклонения пропорциональна расстоянию от места подсоединения, намагниченности металлоконструкции и квадрату рабочего тока.

Эффект вырисовывается очень сильно при высоких значениях тока для сварка и при сварке постоянным напряжением. Во время работы электрическим током эффект дуться ослабляется изменением направления отклонения с частотой сварочного напряжения. Более того, появляющаяся электродвижущая сила наводит вихревые токи в поверхностных слоях металла, также стабилизирующие положение электродуги. Даже при больших значениях рабочего электротока, достигающих тысяч ампер, магнитное дутье вырисовывается несущественно.

Причины отклонения дуги

Особенную затрудненность выполняет эффект во время работы с угловыми и стыковыми швами. Для определения степени намагниченности конструкции используют — указатель магнитного дутья

Как предотвратить возникновение напряжений и деформации

Чтобы повысить качество конструкций и предотвратить образование браков, следует знать от чего зависит величина деформации свариваемого металла.

Понизить напряжения в процессе сварочных работ и предотвратить деформации можно, если придерживаться следующих правил:

при проектировании сварной конструкции сперва нужно провести расчет сварочных деформаций, что позволит правильно сформировать сечения швов и предусмотреть на отдельных участках изделия необходимые для усадки припуски;
швы нужно выполнять симметрично к профильным осям всего изделия и отдельных его деталей;
очень важно, чтобы в одной точке не было пересечений более чем трех швов;
перед свариванием конструкцию необходимо проверить на соответствие расчетам величин зазоров в стыках и общих размеров;
понизить остаточную деформацию можно, если создать в соединении искусственную деформацию, противоположную по знаку от выполняемой сварки. Для этого применяется общий или местный подогрев конструкции;
при выполнении длинных швов применять обратноступенчатый способ на проход;
использовать теплоотводящие прокладки или охлаждающие смеси, способные уменьшить зону разогрева;
накладывать швы таким образом, чтобы последующее соединение вызывало обратные от предыдущих швов деформации;
подбирать для вязких металлов такие сварочные техники, которые способны понизить конечные деформации.. Нужно понимать, чтобы понизить к минимуму деформации при сварке, причины их возникновения и меры предупреждения непосредственно повязаны между собой

Поэтому вначале нужно провести все расчеты и подготовительные работы, и только после этого приступать к процессу сваривания металлоконструкций

Нужно понимать, чтобы понизить к минимуму деформации при сварке, причины их возникновения и меры предупреждения непосредственно повязаны между собой. Поэтому вначале нужно провести все расчеты и подготовительные работы, и только после этого приступать к процессу сваривания металлоконструкций.

Магнитное дутье

Магнитное дутье проявляется преимущественно при сварке дугой постоянного тока. Заметное отклонение дуги и сильное ее блуждание наблюдается при токе 300 – 400 А и выше. Под воздействием магнитного дутья капли электродного металла разбрасываются в стороны, резко повышается разбрызгивание, ухудшается качество швов и снижается производительность, так как сварку швов приходится выполнять короткими участками.

Отклонение дуги магнитными полями.

Магнитное дутье проявляется преимущественно при сварке дугой постоянного тока.

Магнитное дутье в некоторых случаях затрудняет процесс сварки, и поэтому принимаются меры по снижению его действия на дугу.

Магнитное дутье создается электромагнитом, катушка которого включается последовательно в контур дуги. Важным элементом выключателя является камера гашения, которая способствует растягиванию и охлаждению дуги. На рис. 5 – 22, а показана камера с плоской узкой щелью, в которую дуга затягивается магнитным дутьем из широкой части камеры. Отдавая теплоту стенкам камеры, дуга гаснет. Третий тип камеры гашения показан на рис. 5 – 22, в. В этой конструкции узкая щель образуется за счет соответствующего расположения поперечных дугоегойких перегородок со смещенными относительно оси симметрии щелевыми вырезами.

Эффект магнитного дутья при дуговой сварке.

Магнитное дутье ведет к непроварам и ухудшает внешний вид шва. Уменьшить или устранить влияние магнитного дутья на качество сварного шва можно изменением места токоподвода к изделию и угла наклона электрода, временным размещением в зоне сварки дополнительного ферромагнитного материала, создающего симметричное магнитное поле, а также заменой постоянного тока переменным, если это допустимо по условиям свариваемости данного металла.

Параллельное магнитное дутье обычно используется в контакторах, рассчитанных на небольшие номинальные токи. Контактор с системой параллельного дутья реагирует на направление тока. Если направление магнитного поля сохранится неизменным, а ток изменит свое направление, то сила F будет направлена в противоположную сторону. Дуга будет перемещаться не в дугога-сительную камеру, а в противоположную сторону – на катушку магнитного дутья, что может привести к аварии в контакторе. Это является недостатком рассматриваемой системы. Недостатком этой системы является также необходимость повышения уровня изоляции катушки в расчете на полное напряжение сети. Понижение напряжения сети приводит к уменьшению намагничивающей силы катушки и ослаблению интенсивности магнитного дутья, что снижает надежность дугогашения.

Меньшее магнитное дутье в дуге переменного тока является существенным преимуществом последнего.

Удельное сопротивление некоторых металлов.

Магнитное дутье дуги переменного тока значительно слабее, чем дуги постоянного тока. В ряде случаев это является существенным достоинством использования переменного тока для сварки.

Если магнитное дутье вызывается наличием в свариваемой конструкции больших ферромагнитных масс, рекомендуется присоединить обратный провод со стороны, противоположной отклонению дуги.

Уменьшить магнитное дутье можно применением многостороннего или переносного токопровода, наклоном сварочного электрода при сварке ( этим практически широко пользуются сварщики), наложением внешних ( продольных или поперечных) магнитных полей, стабилизацией столба дуги потоком защитных газов, а также другими приемами. В каждом конкретном случае необходимо опробовать несколько приемов и выбрать лучший.

Система магнитного дутья состоит из последовательной катушки 15, размещенной на стальном сердечнике 14 с двумя стальными пластинами – полюсами 13, охватывающими дугогасительную камеру. Ток нагрузки, протекающий по катушке 15, создает магнитный поток Фк ( рис. VII.4, б) в зоне горения дуги. Дуга растягивается, интенсивно охлаждается и гаснет. Для облегчения гашения дуги могут применяться камеры с изоляционными перегородками 10, которые способствуют увеличению длины дуги и ее сопротивления.

Схема отклонения элек – сумме магнитных потоков сва-трической дуги магнитным полем рочного и вихревых токов, значительно меньше магнитного.

2.7.3. Внешнее магнитное поле и дуга

Внешнее магнитное поле по отношению к оси столба дуги мо­жет быть продольным либо поперечным. Все промежуточные слу­чаи могут быть сведены к этим двум.

Продольное внешнее магнитное поле. Направление продоль­ного внешнего магнитного поля совпадает с направлением элек­трического поля, поэтому на дрейфовое движение заряженных частиц магнитное поле влиять не будет. Однако электроны и ионы обладают еще скоростью хаотического теплового движения и ско­ростью амбиполярной диффузии.

Магнитное поле с магнитной индукцией В¯ искривляет траек­торию заряженной частицы и заставляет ее двигаться с угловой скоростью так называемой циклотронной, или ларморовской, час­тотой, равной, например для электрона:

(2.96)

по спирали с ларморовским радиусом г (см. (2.89), (2.90)).

Для электрона ω = 1,7 • 10 11 с -1 при В = 1 Тл. Он вращается по часовой стрелке, если смотреть по направлению поля, и его ско­рость образует с вектором В¯ правовинтовую систему. Положи­тельный ион массой mi вращается в обратном направлении с час­тотой, выражаемой формулой (2.96), в которой нужно mе заме­нить на mi.

При движении по окружности путь l частиц между двумя со­ударениями в среднем такой же, как и при отсутствии магнитного поля. Но длина свободного пробега Λ измеряется по прямой, т. е. по хорде, стягивающей дугу окружности радиусом r. Значит, про­бег Λ уменьшается, что равносильно увеличению давления газа Δр. Отношение Δр/р пропорционально квадрату магнитной индук­ции поля В 2 , но для обычных сварочных режимов оно невелико.

В обычных сварочных дугах при атмосферном давлении наи­большее влияние продольное внешнее магнитное поле оказывает на скорости диффузии ионов и электронов, которые направлены по радиусу от центра дуги к периферии, туда, где меньше их тем­пература и концентрация (рис. 2.39, а). В связи с тем, что скорости диффузии электронов и ионов в квазинейтральном столбе дуги равны (vevi), а масса электрона mе значительно меньше массы иона mi, импульсы, передаваемые нейтральным частицам от ио­нов, будут в тысячи раз больше, чем от электронов. Поэтому плаз­ма столба дуги придет во вращательное движение, соответствую­щее движению ионов в магнитном поле. Столб дуги будет вра­щаться против часовой стрелки, если смотреть по направлению поля В.

Угловая скорость вращения столба дуги будет максимальной в тех его участках, где наибольшие скорости диффузии. Действие электрического поля, которым пренебрегаем в рассуждениях, при­водит к появлению осевой составляющей вектора скорости, и за­ряженные частицы начинают двигаться по спирали.

Продольное магнитное поле получают с помощью соленоида (рис. 2.39, б) и используют для придания дуге большей жесткости и устойчивости. Воздействие продольного внешнего магнитного поля несколько повышает температуру в центре столба дуги в свя­зи с тем, что появляется магнитное давление, которое, как указано в разд. 2.7.1, уравновешивается термическим давлени­емрТ = пкТ.

Поперечное внешнее магнитное поле. При воздействии по­перечного внешнего магнитного поля целесообразно рассматри­вать дугу как проводник с током. При наложении поперечного внешнего маг­нитного поля на собственное магнит­ное поле дуги в сварочном контуре может произойти отклонение дуги в ту или другую сторону (рис. 2.40). В той части сварочного контура, где силовые линии B¯соб и B¯поп совпадают, создает­ся избыточное магнитное давление и дуга отклоняется в сторону более слабого поля. Воздействуя поперечным внешним магнитным полем на дугу и сварочную ванну расплав­ленного металла при сварке под флюсом, можно, например, изме­нить формирование сварного шва (рис. 2.41).

На металл сварочной ванны действуют объемные силы F, пропорциональные согласно уравнению (2.88) векторному произведению плотности тока j и индукции магнитного поля В. Под действием этих сил металл стремится «подтечь» под дугу (рис. 2.41, б), чему также способст­вует отклонение дуги, и глубина проплавления уменьшается. Из­менив направление внешнего магнитного поле на противополож­ное, можно увеличить глубину проплавления.

Если использовать переменное поперечное внешнее магнитное поле, то дуга постоянного тока будет колебаться в обе стороны от положения равновесия с частотой изменения напряженности внеш­него поля. Этот технологический прием получил название «ме­телка» и применяется, например, при сварке труб в трубную доску.

Полярность при сварочных работах

При ручной дуговой сварке подача присадочной проволоки осуществляется в автоматическом режиме. Сваривание деталей по технологии РДС осуществляется при постоянном токе. К клеммам сварочного инвертора нужно подключить кабели массы и электрода. Они обозначаются знаками “+” и “-“. Полярность определяет способ подсоединения проводов к клеммным колодкам полуавтомата. Этот этого параметра зависит характер движения элементарных частиц, что воздействует на сварочный процесс. Если полуавтоматический прибор для сварки функционирует при переменном токе, то сварщик не сможет поменять полярность

При сварке с прямой полярностью кабель с электродным стержнем соединяется с контактом “минус”, провод с прищепкой – с разъемом “плюс”. Температура на концах электрического инвертора достигает 1000 °C. При переходе на обратную полярность провода с электродом и прищепкой нужно поменять местами. Температура на концах электродного стержня повысится до 4000 °C. Смена полярности позволяет контролировать температурный режим обрабатываемых заготовок.

Изменять местоположение кабелей необходимо при обработке легированных изделий. Полярность меняется при различных функциональных режимах сварочного аппарата. Они определяются размерами и материалом изготовления свариваемых изделий. Прямое подключение кабелей используется при проведении сварочных работ на открытом воздухе. В данных условиях детали соединяются с применением трубчатой нити из алюминия, заполненной порошкообразным веществом. В этих условиях можно сваривать толстые металлические пластины.

Смена местоположения кабелей осуществляется при следующих условиях:

  1. При наличии защитных газ, предназначенных для изолирования металлов от воздействия оксидов и ускорение нагрева дуги.
  2. При использовании флюсовых присадок, необходимого для создания однородного диффузного слоя.

При прямой и обратной полярности формируются анодные и катодные пятна. Анодное облако является наиболее горячим. Его температура может достигать 800 °C. Через пятна проходит электроток. В этих областях наблюдается низкое напряжение, что обусловлено местоположением сварочной дуги.

Смена полярности позволяет сварщику увеличить глубину сварочного шва и обрабатывать конструкции с шириной менее 0,3 см. Сварка на прямой и обратной последовательности предоставляет возможность регулировать расположение дуги, что снижает скорость нагрева свариваемых изделий.

Выделяют следующие особенности сварки MMA с прямой полярностью:

  1. Позволяет получить прочный, узкий и глубокий сварочный шов.
  2. Облегчает сварку изделий, в составе которых отсутствует железо, и деталей толщиной более 0,3 см.
  3. Стабильность и устойчивость электрической дуги к срывам.
  4. Сварка невозможна, если применяются металлические стержни с электропроводным материалом, работающих при переменном токе.
  5. Высокое качества раскройки обрабатываемых заготовок.
  6. Воздействует на химический состав свариваемых изделий.
  7. Высокой коэффициент наплавки при нагревании сварочной дуги в аргоновой или гелиевой среде.
  8. Низкие темпы нагрева стержня электрического проводника или присадочной проволоки. Благодаря этому свойству при сварке модно применять инверторы, функционирующие при высокочастотных токах.
  9. Снижает процент внедрения карбона в массу свариваемого изделия.

РДС сварка при обратном подключении обладает следующими отличиями:

  1. Большая толщина и низкая глубина шва.
  2. При соединении тонких пластин их поверхность не деформируется.
  3. Нестабильность дуги, поэтому для сварки нельзя применять инверторы, работающие на невысоких токах.
  4. Низкий риск прожога поверхности металла, что обусловлено отбортовкой свариваемых поверхностей.
  5. При сваривании нельзя использовать стержни, разрушающихся при воздействии высоких температур.
  6. Требует минимизации зазора между свариваемыми частями.
  7. Низкий потенциал напряжения электротока.
  8. Сварка производится прерывистым швом.

При неправильном выборе полярности заготовки могут частично расплавиться, что приведет к возникновению кипящих брызг в сварочной ванне.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий

Adblock
detector