Выбор литейных алюминиевых сплавов
К факторам, которые принимают во внимание при выборе литейного сплава для конкретного конструкторского решения, относятся следующие
Примеси в алюминиевых сплавах
Каждый литейный алюминиевый сплав по ГОСТ 1583-93и для чушек, и для отливок имеет в целом одинаковый состав основныхлегирующих элементов. Требования же по содержанию примесей могут значительно отличаться для чушек и отливок, с одной стороны, и для применяемых способов литья – с другой. При этом ограничения по каждой из таких примесей как марганец, медь, цинк, никель, свинец, олово и кремний, как правило, одинаковы для чушек и отливок. Однако ограничения по их сумме, а также отдельно по содержанию железа различаются как для чушек и отливок, так и для способов литья: в песчаные формы, в кокиль, под давлением. Для чушек требования по примесям выше, чем для отливок. Для литья под давлением допускается максимальное содержание железа и суммы примесей, для литья в песчаные формы – минимальное.
Вторичные алюминиевые сплавы
Количество примесей, особенно железа, является одним из важных качеств литейного сплава. С понижением количества примесей в сплаве повышается его коррозионная стойкость и пластичность
Однако надо принимать во внимание и то, что более чистый сплав и стоить будет дороже. Вторичные литейные сплавы обычно изготавливают из лома по тому же ГОСТ 1583-93 и они могут иметь более низкий по сравнению с первичными сплавами уровень пластичности и коррозионной стойкости именно из-за большего количеств примесей
Однако существует множество изделий, для которых эти механические свойства и коррозионная стойкость вполне приемлемы, и поэтому вторичные сплавы широко применяются. Как видно из требований ГОСТ 1583-93 более «грязный» сплав может потребовать более сложного способа литья.
Прочностные свойства алюминиевых сплавов
В зависимости от требований к механическим свойствам будущей отливки сплав выбирают из следующих условных «прочностных» категорий:
«Прочные и пластичные». В эту группу входят наиболее важные упрочняемые старением сплавы, например, Al–Cu. С помощью различных видов термической обработки их свойства «регулируют» или на высокую прочность или на высокое относительное удлинение.
«Твердые». Литейные сплавы этой группы имеют определенную прочность при растяжении и твердость без особых требований к относительному удлинению. Прежде всего, это сплавы Al–Si–Cu.
«Пластичные». Сплавы с повышенной пластичностью – это, в основном, нормальныеи низкокремнистые силумины.
Литейные свойства алюминиевых сплавов
Литейные свойства сплава, такие как жидкотекучесть и особенности затвердевания, ставят литейщику определенные ограничения. Не каждую отливку можно отлить из любого сплава. Выбор оптимального сплава для конкретной детали обычно требует взаимодействия конструктора и литейщика.
Жидкотекучесть металлического расплава определяют с помощью технологической пробы, например, длины заполнения расплавом специальной спирали. Казалось бы при низкой жидкотекучести надо просто увеличить температуру разливки. Однако в этом случае обычно сталкиваются с другими проблемами, такими как окисление расплава, насыщение его водородом или повышенный износ литейной формы. Эвтектические силумины имеют самую высокую жидкотекучесть, низкокремнистые силумины – среднюю, а сплавы Al–Cu и Al–Mg – самую низкую.
Склонность к горячему растрескиванию является почти противоположностью жидкотекучести. Под горячим растрескиванием понимают отделение друг от друга уже кристаллизовавшихся фаз, например, при усадке. Эти трещины или разрывы могут залечиваться при подаче в форму оставшегося металла. У эвтектических алюминиевых литейных сплавов почти нет проблем с образованием трещин, тогда как для алюминиевых литейных сплавов Al–Cu и Al–Mg эта проблема весьма актуальна.
- Гуляев А.П. Металловедение, 1986.
- Aluminum and Aluminum Alloys, ASM International, 1993.
[править] Ссылки
Электрохимический ряд активности металлов
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au
Периодическая система химических элементов Д. И. Менделеева |
||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | He | |||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |
Uue | Ubn | Ubu | Ubb | Ubt | Ubq | Ubp | Ubh | |||||||||||||||||||||||||
|
Минералы, месторождения…а самородный алюминий?
Запасы алюминия в природе огромны. Среди металлов он держит первое место по распространенности. Но «общительность», активность элемента привела к тому, что в чистом виде металл практически отсутствует.
Производство алюминия в миллионах тонн
Минералов, содержащих алюминий, много:
- бокситы;
- глиноземы;
- полевые шпаты;
- нефелины;
- корунды.
Так что добыча алюминиевого сырья не составляет большого труда.
Если все запасы на Земле истощатся (что сомнительно), то алюминий можно добывать из морской воды. Там его содержание составляет 0,01 мг/л.
Кто захочет увидеть самородный алюминий, тому придется опускаться в жерла вулканов.
Происхождением такой металл из самых глубин нашей планеты.
Производство и рынок
Основная статья: Алюминиевая промышленность
Производство алюминия в миллионах тонн
Достоверных сведений о получении алюминия до XIX века нет. Встречающееся иногда со ссылкой на «Естественную историю» Плиния утверждение, что алюминий был известен при императоре Тиберии, основано на неверном толковании источника.
В 1825 году датский физик Ганс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей плёнкой оксида алюминия.
До конца XIX века алюминий в промышленных масштабах не производился.
Только в 1854 году Анри Сент-Клер Девиль (его исследования финансировал Наполеон III, рассчитывая, что алюминий пригодится его армии) изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.
В 1885 году был построен завод по производству алюминия в немецком городе Гмелингеме, работающий по технологии, предложенной Николаем Бекетовым. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путём в период с 1854 по 1890 год.
Метод, изобретённый почти одновременно Чарльзом Холлом в США и Полем Эру во Франции (1886 год) и основанный на получении алюминия электролизом глинозёма, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с улучшением электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозёма внесли русские учёные К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.
Первый алюминиевый завод в России был построен в 1932 году в городе Волхов. Металлургическая промышленность СССР в 1939 году производила 47,7 тыс. тонн алюминия, ещё 2,2 тыс. тонн импортировалось.
Вторая мировая война значительно стимулировала производство алюминия. Так, в 1939 году общемировое его производство, без учёта СССР, составляло 620 тыс. т, но уже к 1943 году выросло до 1,9 млн т.
К 1956 году в мире производилось 3,4 млн т первичного алюминия, в 1965 году — 5,4 млн т, в 1980 году — 16,1 млн т, в 1990 году — 18 млн т.
В 2007 году в мире было произведено 38 млн т первичного алюминия, а в 2008 — 39,7 млн т. Лидерами производства являлись:
- КНР (в 2007 году произвёл 12,60 млн т, а в 2008 — 13,50 млн т)
- Россия (3,96/4,20)
- Канада (3,09/3,10)
- США (2,55/2,64)
- Австралия (1,96/1,96)
- Бразилия (1,66/1,66)
- Индия (1,22/1,30)
- Норвегия (1,30/1,10)
- ОАЭ (0,89/0,92)
- Бахрейн (0,87/0,87)
- ЮАР (0,90/0,85)
- Исландия (0,40/0,79)
- Германия (0,55/0,59)
- Венесуэла (0,61/0,55)
- Мозамбик (0,56/0,55)
- Таджикистан (0,42/0,42)
В 2016 году было произведено 59 млн тонн алюминия
См. также: Список стран по выплавке алюминия
На мировом рынке запас составляет 2,224 млн т., а среднесуточное производство — 128,6 тыс. т. (2013.7).
В России монополистом по производству алюминия является компания «Российский алюминий», на которую приходится около 13 % мирового рынка алюминия и 16 % глинозёма.
Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.
Цены на алюминий (на торгах международных сырьевых бирж) с 2007 по 2015 годы составляли в среднем 1253—3291 долларов США за тонну.
Нахождение в природе
Распространённость
По распространённости в земной коре занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14 %.
Природные соединения алюминия
В природе алюминий, в связи с высокой химической активностью, встречается почти исключительно в виде соединений. Некоторые из природных минералов алюминия:
- Бокситы — Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3)
- Нефелины — KNa3[AlSiO4]4
- Алуниты — (Na,K)2SO4·Al2(SO4)3·4Al(OH)3
- Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)
- Корунд (сапфир, рубин, наждак) — Al2O3
- Полевые шпаты — (K,Na)2O·Al2O3·6SiO2, Ca[Al2Si2O8]
- Каолинит — Al2O3·2SiO2 · 2H2O
- Берилл (изумруд, аквамарин) — 3ВеО · Al2О3 · 6SiO2
- Хризоберилл (александрит) — BeAl2O4.
Тем не менее, в некоторых специфических восстановительных условиях (жерла вулканов) найдены ничтожные количества самородного металлического алюминия.
В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в водоёмах России колеблются от 0,001 до 10 мг/л. В морской воде его концентрация 0,01 мг/л.
Изотопы алюминия
Основная статья: Изотопы алюминия
Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al с ничтожными следами 26Al, наиболее долгоживущего радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при расщеплении ядер аргона 40Arпротонами космических лучей с высокими энергиями.
[править] Химические свойства
Алюминий — химически активный элемент. В электрохимическом ряду напряжений он стоит рядом с щелочными и щелочноземельными элементами. Его стандартный электродный потенциал равен −1,67 В.
При обычных условиях алюминий легко взаимодействует с кислородом воздуха и покрывается тонкой (2 · 10 −5 см), но прочной оксидной пленкой Al2О3 (пассивация), которая защищает его от дальнейшего окисления, обуславливая этим высокую коррозионную стойкость, придает ему матового вида и сероватого цвета. Однако при содержании в алюминия или окружающей среде ртути, натрия, магния, кальция, кремния, меди и других элементов прочность оксидной пленки и ее защитные свойства резко снижаются.
При 25 °C алюминий реагирует с хлором, бромом, йодом образуя соответственно хлорид алюминия, бромид алюминия, йодид алюминия, при 600 °C — с фтором, образуя фторид алюминия.
Порошкообразный алюминий при температуре выше 800 °C образует с азотом нитрид алюминия. При взаимодействии атомарного водорода с парами алюминия при −196 °C образуется гидрид (AlH) x (x = 1, 2). Выше 200 °C алюминий реагирует с серой, образуя сульфид алюминия. С фосфором при 500 ° C образует фосфид AlP. При 1200 °C алюминий реагирует с углеродом, образуя карбид алюминия. В присутствии расплавленных солей (криолит и др.) эта реакция протекает при меньшей температуре — 1000 °C
Выше 800 °C могут образоваться соединения одновалентного алюминия, например
\mathrm{Al_2X_3 + 4\ Al \rightarrow 3\ Al_2X \;\;(X \in \{O, S, Se\})}
С рядом металлов и неметаллов алюминий образует сплавы, в которых содержатся интерметаллические соединения — алюминиды, обычно достаточно тугоплавкие и обладают высокой твердостью и жаростойкостью.
Благодаря образованию оксидной пленки алюминий довольно устойчив не только в отношении воздуха, но и воды . С водой алюминий не взаимодействует даже при нагревании. Но когда оксидную пленку разрушить, алюминий энергично взаимодействует с водой, вытесняя водород :
\mathrm{2\ Al + 6\ H_2O \rightarrow 2\ Al(OH)_3 + 3\ H_2\uparrow \;}
Алюминий обладает амфотерными свойствами, он реагирует с кислотами и щелочами .
Он легко взаимодействует с разбавленными азотной и серной кислотами:
- \mathrm{2\ Al + 6\ HNO_3 \rightarrow Al(NO_3)_3 + 3\ NO_2\uparrow + 3H_2O}
- \mathrm{2\ Al + 3\ H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3\ H_2\uparrow}
Очень разбавленные, а также очень крепкие HNO 3 и H 2 SO 4 на алюминий почти не действуют. В отношении ортофосфорной и уксусной кислот алюминий устойчив. Чистый металл также устойчив к соляной кислотакислоте, но обычный технический в ней растворяется.
В растворах сильных щелочей (NaOH, KOH) алюминий растворяется с выделением водорода и образованием алюминатов:
\mathrm{2\ Al + 2\ NaOH + 6\ H_2O \rightarrow 2\ Na + 3\ H_2\uparrow}
Достаточно энергично он разъедается также раствором NH4OH.
Состав и структура алюминия
Алюминий – это самый распространенный в земной коре металл. Его относят к легким металлам. Он обладает небольшой плотностью и массой. Кроме того, у него довольно низкая температура плавления. В то же время он обладает высокой пластичностью и показывает хорошие тепло- и электропроводные характеристики.
Предел прочности чистого алюминия составляет всего 90 МПа. Но, если в расплав добавить некоторые вещества, например, медь и ряд других, то предел прочности резко вырастает до 700 МПа. Такого же результат можно достичь, применяя термическую обработку.
Алюминий, обладающий предельно высокой чистотой – 99,99% производят для использования в лабораторных целях. Для применения в промышленности применяют технически чистый алюминий. При получении алюминиевых сплавов применяют такие добавки, как – железо и кремний. Они не растворяются в расплаве алюминия, а из добавка снижает пластичность основного материала, но в то же время повышает его прочность.
Внешний вид простого вещества
Проведенные расчеты показывают, что плотность чистого металла составляет 2,7 кг на метр кубический.
Основные свойства алюминия
Главными факторами, определяющими обширность использования любого материла, являются его свойства и показатели. На сегодняшний день Сплавы на основе алюминия применяются практически во всех сферах деятельности. Простой причиной для такого распространения служат основные свойства алюминия, которые приведены в списке.
- плотность — 2,7 г/см³
- температура плавления технического алюминия — 658 °C;
- температура плавления чистого алюминия — 660 °C;
- удельная теплота плавления— 390 кДж/кг;
- температура кипения — 2500 °C;
- удельная теплота испарения— 10,53 МДж/кг;
- удельная теплоемкость— 880 Дж/кг·K;
- временное сопротивление литого алюминия — 10—12 кг/мм², временное сопротивление деформируемого — 18—25 кг/мм²,временное сопротивление сплавов — 38—42 кг/мм²;
- Твёрдость по Бринеллю — 24…32 кгс/мм²;
- пластичность у технического — 35 %;
- пластичность у чистого — 50 %;
- Модуль Юнга— 70 ГПа;
- Алюминий обладает высокой электропроводностью (37·106 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 % от электропроводности меди, обладает высокой светоотражающей способностью;
- Слабый парамагнетик;
- Температурный коэффициент линейного расширения 24,58·10−6К−1 (20…200 °C);
- Удельное сопротивление 0,0262..0,0295 Ом·мм²/м;
- Температурный коэффициент электрического сопротивления 4,3·10−3K−1. Алюминий переходит в сверхпроводящее состояние при температуре 1,2 кельвина.
Важным свойством, которым отличаются сплавы на основе алюминия — это высокая пластичность
Легко может раскатываться в фольгу, что особенно важно для использования в электронике и электротехнике. Материал легко может обрабатываться при небольших механических усилиях
Невысокая температура плавления позволяет переплавлять и изготавливать детали из сплавов алюминия с минимальными энергетическими затратами, что удешевляет производство и саму продукцию.
Марки алюминия по ГОСТУ
Алюминий и его сплавы, равно как и другие металлы, маркируется по установленным стандартам. Так, существуют марки алюминия по ГОСТУ, которые приведены в списках.
Деформируемые алюминиевые сплавы:
Упрочняемые термической обработкой:
- Дюраль Д1, Д16, Д20*, сплавы алюминия меди и марганца ;
- Сплав авиаль (АВ);
- Высокопрочный сплав (В95);
- Сплавы для ковки и штамповки (АК6, АК8, АК4-1 ).
Не упрочняемые термической обработкой:
- Сплавы алюминия с марганцем (АМц);
- Сплавы алюминия с магнием (АМг2, АМг3, АМг5, АМг6).
Литейные алюминиевые сплавы для фасонного литья:
- Сплавы алюминия с кремнием (силумин /) Al-Si (АЛ2, АЛ4, АЛ9) — высокая плотность отливок, легко обрабатываются резанием, отличаются высокими линейными показателями;
- Сплавы алюминия с медью Al-Cu (АЛ7, АЛ19) — высокие механические свойства после термической обработки, легко обрабатываются резанием;
- Сплавы алюминия с магнием Al-Mg (АЛ8, АЛ27) — повышенная стойкость к коррозии, повышенные механические свойства, легко обрабатывается резанием;
- Жаропрочные алюминиевые сплавы (АЛ1, АЛ21, АЛ33) — легко обрабатываются резанием, повышенная жаропрочность.
Классификация с точки зрения удобства механической обработки (Мягкие и пластичные, неудобные для механической обработки резанием):
- Отожженные — Д16, АВ;
- Не упрочняемые термической обработкой — АМц, АМг2, АМг3, АМг5, АМг6.
Относительно прочные и твердые сплавы алюминия, которые достаточно легко обрабатывать механическим путем:
- Закаленные и искусственно состаренные: Д16Т, Д16Н, АВТ;
- Ковочные: АК6, АК8, АК4-1;
- Литейные: АЛ2, АЛ4, АЛ9, АЛ8, АЛ27, АЛ1, АЛ21, АЛ33.
Получение
Впервые алюминий был получен восстановлением хлорида алюминия металлическим натрием:
В настоящее время его получают электролизом расплавленных солей. В качестве электролита служит расплав, содержащий 85— 90% комплексной соли 3NaF • A1F3 (или Na3AlFe) — криолита и 10–15% оксида алюминия Al2O3 — глинозема. Такая смесь плавится при температуре около 1000°С. При растворении в расплавленном криолите глинозем ведет себя как соль алюминия и алюминиевой кислоты и диссоциирует на катионы алюминия и анионы кислотного остатка алюминиевой кислоты:
Криолит диссоциирует:
При пропускании электрического тока катионы алюминия и натрия движутся к катоду — графитовому корпусу ванны, покрытому на дне слоем расплавленного алюминия, получаемого в процессе электролиза. Так как алюминий менее активен, чем натрий, то он восстанавливается в первую очередь. Восстановленный алюминий в расплавленном состоянии собирается на дне ванны, откуда его периодически выводят.
Анионы AlO33− и A1F63− движутся к аноду — графитовым стержням или болванкам. На аноде в первую очередь разряжается анион AlO33−:
Физические свойства алюминия таблица – Справочник металлиста
Алюминий – металл, содержание которого в природе самое большое среди всех известных.
Позднее начало его применения вызвано тем, что, поскольку он обладает высокой химической активностью, то находится в земной коре только в составе различных химических соединений.
Восстановление чистого металла сопряжено с рядом трудностей, преодолеть которые стало возможным только с развитием технологий добычи металлов.
Внешний вид алюминия
Механические свойства алюминия, такие как мягкость, податливость штамповке, легкость в обработке, послужили широкому распространению во многих отраслях промышленности. Особенно часто алюминия используется в составе сплавов с другими металлами.
Физические и химические свойства сплавов алюминия послужили поводом к широкому использованию их в качестве конструкционных материалов, снижающих общий вес конструкции без ухудшения прочностных качеств.
Свойства алюминия и его сплавов
Алюминий является третьим по распространенности – после кислорода и кремния – среди около 90 химических элементов, который обнаружены в земной коре. Среди элементов-металлов – он первый. Этот металл обладает многими полезными свойствами, благодаря которым он широко применяется во всех сферах человеческой деятельности.
Алюминий – это ковкий металл, который имеет серебристо-белый цвет и легко обрабатывается большинством методов обработки металлов давлением: прокаткой, волочением, экструзией (прессованием), ковкой. Его плотность – удельный вес – составляет около 2,70 граммов на кубический сантиметр. Чистый алюминий плавится при температуре 660 градусов Цельсия.
Алюминий имеет относительно высокие коэффициенты теплопроводности и электропроводности. Этот металл в присутствии кислорода всегда покрыт тонкой, невидимой пленкой оксида. Эта пленка является в значительной степени непроницаемой и имеет довольно высокие защитные свойства. Поэтому алюминий обычно демонстрирует стабильность и длительный срок службы при нормальных атмосферных условиях.
Алюминий и драгоценные камни
Из-за его химической активности и высокому сродству к кислороду алюминий не встречается в природе в металлическом состоянии. Он всегда находится в комбинации с другими химическими элементами. Рубины и сапфиры, например, являются комбинациями – соединениями – алюминий и кислорода, гранаты – алюминия и кремния, а нефриты – это соединения алюминия с натрием, кислородом и кремнием.
Основные свойства различных сплавов алюминия
Давайте рассмотрим основные сплавы на базе алюминия именно с точки зрения их приобретенных свойств.
Сплав меди и алюминия бываетнескольких видов – “чистый”, в котором главными действующими элементами выступают Al и Cu, “медно-магниевый”, в котором помимо меди и алюминия некоторую долю занимает магий и “медно-марганцевый” с легированием марганцем. Такие сплавы часто также называют дюралюминиям, их легко резать и сваривать “точечно”.
Характерная черта дюралюминов в том, что для них берется алюминий с примесями железа и кремния. Как мы уже говорили, обычно присутствие этих элементов ухудшает качество сплава, но данный случай – исключение. Железо при повторной термической обработке сплава повышает его жаростойкость, а кремний выступает катализатором в процессе “старения” дюралюминов. В свою очередь магний и марганец в качестве легирующих элементов делают сплав намного прочнее.
Сплав алюминия и магния имеет разные показатели прочности и пластичности, в зависимости от количества магния. Чем магния меньше, тем меньше прочность изделия из такого сплава и тем выше стойкость к коррозии. Увеличение содержания магния на 1 % приводит к росту прочности до 30 000 Па. В среднем сплавы на основе магния и алюминия содержат до 6% первого. Почему не больше? Если магния в сплаве становится слишком много, изделие из него будет быстро покрываться ржавчиной, а кроме того такие изделия имеют нестабильную структуру, могут треснуть и т.д.
Термообработку сплавов магния с алюминием не проводят, так как она малоэффективна и не дает необходимого эффекта увлечения прочности.
Сплав алюминия с цинком и магнием считается наиболее прочным из всех алюминиевых сплавов, известных на сегодняшний день. Его прочность сравнима с титаном! Во время термообработки большая часть цинка растворяется, что и делает данный сплав таким прочным. Правда использовать в электрической промышленности изделия из таких сплавов невозможно, они не стойки к коррозии под напряжением. Чуть повысить коррозионную стойкость можно, если добавить в состав меди, но показатель все равно останется не удовлетворительным.
Сплав алюминия с кремнием – самый распространенный сплав в литейной промышленности. Поскольку кремний прекрасно растворяется в алюминии при нагреве, то образуемый расплавленный состав замечательным образом подходит для формовочного и фасонного литья. Готовые изделия относительно легко режутся и имеют высокую плотность.
Сплав алюминия с железом, как и сплавы алюминия с никелем практически не встречается “в живую”. Железо добавляют исключительно как вспомогательный элемент для того, чтобы литейный сплав легко отлипал от стенок формы. Никель с свою очередь наиболее известен в производстве магнитов и присутствует в качестве одного из элементов в сплаве алюминий-никель-железо.
Сплав титана и алюминия, такжене встречается в чистом виде и используется только дляувеличения прочности изделий. С той же целью проводится сварка стали и сплавов алюминия.