Обработка титана на токарном станке

Что нужно учитывать при обработке?

При необходимости работы с титаном обязательно нужно учитывать следующие свойства:

Первое – это налипание. При обработке титана с использованием токарного станка создается высокая температура, из-за которой материал начинает плавиться и прилипать к режущему инструменту. Во время обработки также возникает мелкая дисперсная пыль

Она может детонировать, а потому во время работы очень важно строго соблюдать все правила техники безопасности. Для того чтобы качественно осуществить процесс резки такого сверхпрочного металла, необходим инструмент, который может обеспечить подходящий режим

Специально подбирать инструмент для резки приходится еще и потому, что титан характеризуется низкой теплопроводностью.

После того как обработка титана заканчивается, готовая деталь обычно подогревается, после чего ей дают остыть на открытом воздухе. Таким образом создают защитную пленку на поверхности материала, о которой было написано выше.

Регулировка параметров обработки

Во время обработки такого сверхпрочного материала необходимо учитывать три основных параметра:

  • угол фиксации рабочего инструмента;
  • размерность подачи;
  • скорость резания.

Если регулировать данные параметры, то с их помощью можно изменить и температуру обработки. При разных режимах обработки наблюдаются и разные параметры данных характеристик.

Для предварительной обработки со срезом верхнего слоя до 10 мм допускается припуск в 1 мм. Для работы таком режиме обычно выставляются следующие параметры. Во-первых, угол фиксации от 3 до 10 мм, во-вторых, размерность подачи от 0,3 до 0,8 мм, а скорость резания выставляет 25 м/мин.

Промежуточный вариант обработки титана предполагает срез верхнего слоя от 0,5 до 4 мм, а также образование ровного слоя припуска 1 мм. Угол фиксации 0,5-4 мм, размерность подачи 0,2-0,5 мм, скорость подачи 40-80 м/мин.

Основной вариант обработки – это снятие слоя 0,2-0,5 мм, а также удаление припусков. Скорость работы 80-120 м/мин, угол фиксации 0,25-0,5 мм, а размерность подачи 0,1-0,4 мм.

Здесь также очень важно отметить, что механическая обработка титана на таком оборудовании всегда проводится только при наличии подачи специальной охлаждающей эмульсии. Субстанция подается под давлением на рабочий инструмент

Это необходимо для того, чтобы создать нормальный температурный режим работы.

Трудности обработки титана

Принято считать, что титан с трудом поддается эффективной механической обработке. Но это не типично для современных инструментов и методов обработки. Трудности отчасти возникают оттого, что механическая обработка титана — новая область, и в ней не накоплено достаточно опыта. Кроме того, проблемы нередко носят относительный характер — в сравнении с ожиданиями или иным опытом, особенно в тех случаях, когда этот опыт касается обработки таких материалов, как чугун или низколегированные стали, которые предъявляют более низкие требования и прощают больше ошибок. Титан также может представляться трудным в обработке по сравнению с некоторыми сортами нержавеющей стали.

Хотя обработку титана, как правило, приходится выполнять при других скоростях и подачах, а также с соблюдением ряда предосторожностей, по сравнению с иными материалами, он может быть довольно легким в обработке. Если жесткая деталь из титана надежно зажата на станке соответствующей мощности, в хорошем состоянии и оборудованном шпинделем с конусом ISO 50 с коротким вылетом инструмента, проблем не должно возникать — при условии, что правильно выбран режущий инструмент

Но идеальные, стабильные условия не всегда присутствуют при фрезеровании. Кроме того, многие детали из титана имеют сложную форму с мелкими, узкими или большими и глубокими карманами, тонкими стенками и фасками. Для успешной обработки этих форм неизбежно требуется инструмент более длинного исполнения, что может вести к деформации инструмента. Потенциальные проблемы с вибрацией чаще возникают при обработке титана.

Шпиндельные соединения

В системном подходе важна также роль шпинделя. Обрабатывающие устройства испытывают трудности при достижении высоких скоростей удаления металла, учитывая низкую скорость резания и высокие силы резания, характерные для титана. На протяжении многих лет производители станков улучшали жесткость и демпфирование на шпинделях и станочных конструкциях. Шпиндели спроектированы с высоким крутящим моментом при низких скоростях вращения. Хотя все эти достижения повышают производительность, соединение шпинделя часто остается слабым звеном.В большинстве случаев соединение инструмента-шпинделя определяет, сколько материала может быть удалено в данной операции.

Высокопроизводительная обработка обычно характеризуется использованием высоких подач и агрессивной глубиной обработки. Благодаря постоянным достижениям в режущих инструментах существует потребность в шпиндельном соединении, которое лучше использует доступную мощность станка.За последние несколько десятилетий несколько последних типов шпиндельного соединения были разработаны или оптимизированы. Благодаря хорошей цене / выгодной позиции конусность 7/24 ISO стала одной из самых популярных систем на рынке. Однако конструкция имеет ряд ограничений, связанными с точностью на высоких скоростях. Как правило, конус шпинделя начинает прокручиваться от центробежной силы начиная от скорости вращения шпинделя в 20000 об / мин. Это дает погрешности обработки,ведь конус начинает терять контакт, позволяя инструменту перемещаться вверх по шпинделю.

Конструкция Kennametal, которая недавно был улучшена для обработки титана, представляет собой интерфейс инструмента-шпинделя «KM», который закрепляет держатель инструмента с помощью шарового механизма, который действует на поверхность отверстия

В новой KM4X-системе улучшение связано с ограничением изгибов конструкции, что важно при фрезеровании материалов с высокой силой, таких как титан

В торцевых фрезерованиях, где длительность проецирования длинна, ограничивающим фактором является этот изгиб. Новая система KM4X обеспечивает высокую силу зажима и сопротивление помехам для обеспечения высокой жесткости и высокой изгибающей способности для повышения производительности при обработке титановых сплавов.

Подбор необходимого инструмента

Требования к обрабатывающему инструменту для титана достаточно высоки и для работы в основном применяются резцы, со сменными головками используемые на станках с ЧПУ. Инструмент в ходе рабочего процесса подвергается изнашиванию: абразивному, адгезийному  и диффузному. При диффузном изнашивании происходит  взаимное растворение материала режущего инструмента и титановой заготовки. Особо активно эти процессы протекают при температуре 900 — 1200 °С.

Подборка ведется с учетом режима обработки:

  • при предварительном процессе используются пластины круглой или квадратной формы (iC 19) изготовленные из специального сплава H 13 A без  покрытия;
  • при промежуточном процессе, используются пластины круглой формы, изготовленные из сплава H 13 A, GC 1115 с покрытием PDV;
  • при основном процессе, используются пластины со шлифовальными режущими кромками изготовленные из сплавов H 13 A, GC 1105 и CD 10.

При процессе воздействия на  титановую заготовку с использованием специальных резцов применяются высокоточные токарные станки с ЧПУ и различные  режимы  обеспечивающие автоматизацию проводимых операций и высокое качество изготавливаемых деталей. Размеры готовой детали должны иметь нулевое или минимальное отклонение от заданных параметров согласно техническому заданию.

Особые условия обработки металла

Титан – особо прочный, легкий, серебристый метал стойкий к воздействию процесса ржавления. Высокая устойчивость к воздействию внешней среды обеспечивается за счет образования на поверхности материала защитной пленки TiO2. Негативное воздействие на титан могут оказывать вещества содержащие щелочь, что  приводит к потере прочностных  характеристик.

В обязательном порядке необходимо учитывать:

металл очень вязкий и когда производится его токарная обработка с использованием токарного станка, сильно нагревается, что приводит к налипанию титановых отходов на режущий инструмент;
мелкая дисперсная пыль, образующаяся во время обработки, может детонировать, что требует особой осторожности и соблюдения мер безопасности;
для резания титана требуется специальное оборудование, обеспечивающее необходимый режим резания;
титан обладает низкой теплопроводностью, что требует для  резания специально подобранный режущий инструмент.

После выполнения процесса, когда завершена  обработка изделия из титана для создания прочной защитной пленки деталь нагревают, а затем охлаждают на открытом воздухе.

Режимы токарной обработки титана

Токарная обработка изделий из титана выполняется с применением специальных режущих инструментов. Существуют три основных этапа работ: предварительный, промежуточный и окончательный.

Для выбора оптимального режима работы необходимо знать основные технические параметры обработки. Они зависят от угла расположения инструмента в плане (Kr), величины подачи (Fn) и скорости резания (Ve). Для контроля температурного нагрева можно изменять скорость вращения заготовки, толщину образовавшейся стружки и глубину резания.

Рекомендации по значениям основных параметров токарной обработки титана в зависимости от области применения:

  • черновая – до 10 мм. Она применяется для удаления неравномерной корки на титане. С ее помощью происходит формирование кольца-свидетеля, которое отрезается для анализа состояния материала по всей глубине заготовки. Рекомендуемые параметры: Kr – 3-10 мм; Fn – 0,3-0,8 мм; Ve – 25 м/мин;
  • промежуточная – от 0,5 до 4 мм. Этот этап необходим для подготовки детали к окончательному резанию. В процессе может изменяться глубина резания, материал не должен содержать корки. Обязательно необходимо оставить припуск 1 мм для окончательного этапа. Рекомендуемые параметры: Kr – 0,5-4 мм; Fn – 0,2-0,5 мм; Ve – 40-80 м/мин;
  • окончательная – 0,2-0,5 мм. На этом этапе выполняется окончательное удаление припусков, происходит формирование детали. К нему предъявляются высокие требования. Во время его выполнения следует максимально точно рассчитать режимы: Kr – 0,25-0,5 мм; Fn – 0,1-0,4 мм; Ve – 80-120 м/мин.

Для всех вышеописанных режимов рекомендуется применять специальные охлаждающие жидкости. Это позволит уменьшить влияние температурного налипания стружки к поверхности резца.

Сложность механической обработки титана

Специалисты утверждают, титан трудно подвергается обработке механического вида. Только современных инструментов это утверждение не касается. Трудности с ним могут возникнуть лишь оттого, что работа с ним – сфера совершенно новая! Опыта при работе в ней мало или совсем недостаточно.

Кроме этого, проблемы, возникающие при работе, иногда носят только относительный характер. Особенно тогда, когда это касается чугуна или же низколегированных сталей. Именно они вызывают заниженные требования. Естественно, его иногда считают трудным для обработки, если сравнивать материал только со сталью.

Просто с ним необходимо работать при совершенно других подачах, скоростях, соблюдая определенные предосторожности. Если сравнивать его с прочими материалами, то иногда в обработке он бывает не трудным

Если только деталь, выполненная из данного материала, будет крепко зажатой в мощном станке, то тогда никаких посторонних вопросов не будет. Если при оборудовании еще есть шпиндель с конусом марки ISO 50 и наличием инструмента короткого вылета.

При его фрезеровании тоже не всегда есть совершенные условия, которые могут быть постоянными. Кроме этого его некоторые детали имеют различную форму. Для эффективной обработки таких форм требуется определенный инструмент, который иногда может подвергаться процессу деформаций. Возможны также вопросы с вибрацией, но они бывают при его обработке.

Инструмент для обработки

Требования, которые предъявляются к инструменту для обработки материала, довольно высоки. Чаще всего обработка титана и сплавов производится при использовании резцов, у которых имеются съемные головки, а устанавливаются они на станки с ЧПУ. Во время эксплуатации рабочий инструмент подвергается абразивному, адгезийному и диффузному изнашиванию

Особое внимание стоит уделить диффузному изнашиванию, так как в это время происходит процесс растворения и режущего материала, и заготовки из титана. Наиболее активно эти процессы протекают, если температура находится в пределах от 900 до 1200 градусов по Цельсию

Цель анодирования титана

Анодирование изделий из титана также называют анодным оксидированием. Если сравнивать анодирование в условиях промышленного производства с применением специального оборудования и самостоятельное покрытие оксидной пленкой, то, конечно, второй способ несколько уступает качеством результата. Но тем не менее металл, обработанный в домашних условиях, приобретает ряд неоспоримых преимуществ:

  1. Оксидная пленка выполняет защитные функции, не позволяя влаге проникнуть к металлической основе изделия. Барьер предотвращает образование коррозии, что продлевает сроки эксплуатации предметов быта из титанового сплава.
  2. Анодирование титана укрепляет поверхность изделия и делает его более устойчивым к различным видам внешних повреждений.
  3. Металлические изделия после анодного оксидирования частично или полностью теряют способность проводить электрический ток.
  4. Посуда с оксидным покрытием выдерживает длительный нагрев, обладает антипригарными свойствами и не выделяет токсичных веществ во время приготовлении пищи.
  5. Если изделие из титана прошло оксидную обработку, это не является препятствием к другим видам обработки посредством гальванизации.
  6. Регуляция силы тока и составляющих электролитической жидкости позволяют сделать оксидное покрытие не только более прочным, но и красивым. Применение красителей позволит придать изделию привлекательный внешний вид.

Анодирование титана в условиях производства позволяет провести более глубокую обработку деталей, однако даже в домашних условиях можно добиться повышения износостойкости металлических изделий.

Соблюдение технологии обработки титановых сплавов

Для резания заготовок из титана применяются токарные станки с ЧПУ и специальный  режущий инструмент, а процесс делится на ряд операций, каждая из которых выполняется по особой технологии.

Операции обработки на  токарных станках  делятся:

  • предварительные;
  • промежуточные;
  • основные.

Необходимо также учитывать возникающую вибрацию при обработке заготовок из титановых сплавов,  появляющуюся при операциях на токарных станках. Частично эту проблему удается решить с помощью многоступенчатого крепежа заготовок  с расположением как можно ближе к шпинделю. Для уменьшения влияния температуры при обработке  лучшим вариантом является использование резцов из  мелкозернистых  твердых сплавов без покрытия и пластин со специальным покрытием PVD.

https://youtube.com/watch?v=NJnjYlQDvJA

При обработке заготовок  на  токарном станке учитываются три основных параметра:

  • угол фиксации инструмента (Kr);
  • размерность подачи (Fn);
  • скорость резания (Ve).

С помощью регулирования данных параметров производится изменение температурного режима резания. Для различных режимов, когда проводится обработка, устанавливаются и регулирующие параметры:

  • предварительного – до 10 мм производится снятие верхнего слоя с титановой заготовки с образованием припуска 1 мм (Kr -3 -10 мм, Fn – 0,3 — 0,8 мм, Ve — 25 м/мин);
  • промежуточного – 0,5 – 4 мм, удаляется верхний слой  с образованием ровной поверхности с припуском 1 мм (Kr – 0,5 – 4 мм, Fn – 0,2 – 0,5 мм, Ve —  40 — 80 м/мин).
  • основного – 0,2 – 0,5 мм, чистовая обработка с удалением припуска (Kr – 0,25 – 0,5 мм, Fn – 0,1 – 0,4 мм, Ve — 80 — 120 м/мин).

Обработка заготовок из титана ведется с обязательной подачей специальной эмульсии охлаждающей инструмент  под давлением для обеспечения нормального температурного режима. При использовании более глубокого реза необходимо снижать скорость обработки титана, меняя режимы работы.

Классификация способов обработки

Для того чтобы осуществить резку такого сырья, необходим специальный инструмент, а также токарный станок с ЧПУ. Сам процесс разделяется на несколько операций, каждая из которых осуществляется по собственной технологии.

Что касается самих операций, то они могут быть основными, промежуточными или предварительными.

При обработке титана на станках нужно помнить, что в это время возникает вибрация. Для того чтобы частично решить данную проблему, можно крепить заготовку многоступенчатым образом, а также делать это как можно ближе к шпинделю. Чтобы уменьшить влияние температуры на процесс обработки, рекомендуется использовать резцы из мелкозернистого твердого сплава без покрытия и пластин со специальным PVD

Здесь стоит обратить внимание на то, что во время обработки титана резанием от 85 до 90% всей энергии будет превращаться в тепловую, которая будет поглощаться стружкой, обрабатываемой заготовкой, резцами и жидкостью, которая предназначена для охлаждения. Обычно температура в зоне работ достигает 1000-1100 градусов по Цельсию

Описание

Титан характеризуется тем, что он очень прочный, имеет серебристый цвет, а также обладает огромной устойчивостью к процессу ржавления. Из-за того, что на поверхности металла образуется пленка TiO2, он обладает хорошей устойчивостью ко всем внешним воздействиям. Негативно на свойствах титана может сказаться лишь влияние веществ, которые содержат в своем составе щелочь. При контакте с этими химическими веществами сырье теряет свои прочностные характеристики.

Из-за того, что продукт обладает повышенной прочностью, при токарной обработке титана приходится использовать инструмент из сверхпрочного сплава, а также создать другие особые условия при работе на токарном станке с ЧПУ.

Характеристики титана затрудняющие его обработку

Высокотемпературная прочность увеличивает силу резания при механической обработке. Высокое упрочнение и большая скорость деформации также увеличивают энергию, необходимую для удаления стружки, что приводит к более высоким температурам. Титан реагирует практически со всеми материалами при высоких температурах, приводя к химическому износу режущих инструментов.

Кроме того, низкая теплопроводность титановых сплавов является одним из факторов, ограничивающих производительность. В большинстве других материалов тепло передается в стружку. Однако при низкой теплопроводности титана тепло переходит в инструмент. Твердость карбида снижается по мере повышения температуры, что означает, что скорость резания и срок службы инструмента ниже для обработки титана по сравнению со сталью. Когда скорость резания увеличивается с 50 м / мин. до 100 м / мин. в титане анализ FEA предсказывает повышение температуры на 250ºC.

Поэтому для оптимизации производительности инструменты должны надлежащим образом охлаждаться. Правильный расход охлаждающей жидкости означает улучшенный срок службы инструмента и более высокие максимальные эффективные скорости резания. Если он не охлаждается должным образом, инструмент быстро нагревается. Это может сократить срок службы инструмента и повлиять на чистоту поверхности из-за появления наростов на режущей кромке, которые возникают, когда материал заготовки липнит на режущую кромку.

Традиционное внешнее охлаждение, предназначенное для обработки, часто попадает за зону резания, а заказные решения высокого давления (1000 мм на квадратный метр или выше) могут стоить десятки тысяч рублей. Альтернативой является поставка охлаждающей жидкости через внутренние отверстия. При таком подходе СОЖ попадает туда, где инструмент режет заготовку, обеспечивая эффективную подачу хладагента, теплопередачу и смазывающую способность. Испытания жизненного цикла инструмента, сравнивающие внешнее охлаждение с внутренней подачей СОЖ на одинаковых геометриях режущих кромок, показывают более чем в два раза увеличенный срок службы инструмента при внутренней подачи. При токарных испытаниях при 150 sfm, сравнивающих этот инструмент с внешней подачей СОЖ при обработке титана, пластины Beyond Blast при давлении охлаждающей жидкости 100 фунтов на квадратный дюйм обеспечивали на 25 процентов больше срока службы инструмента, чем стандартные пластины с использованием СОЖ высокого давления 1000 psi.

При использовании вставных круглых фрезерных пластин, внутренняя подача обеспечивает более чем в 2,5 раза лучший срок службы инструмента. Увеличение скорости также сильно влияет на срок службы инструмента. Простое увеличение скорости от 150 до 187 SFF на стандартном инструменте уменьшает срок службы инструмента на 60 процентов. С помощью внутренних отверстий для охлаждающей жидкости срок службы инструмента уменьшался всего на 23 процента при увеличении скорости. Срок службы этих фрезерных инструментов на более высокой скорости был почти в два раза больше, чем стандартные инструменты на низкой скорости. Это связано с эффективным регулированием температуры, обеспечиваемым этим подходом к доставке хладагента.

Цель анодирования титана

Анодирование изделий из титана также называют анодным оксидированием. Если сравнивать анодирование в условиях промышленного производства с применением специального оборудования и самостоятельное покрытие оксидной пленкой, то, конечно, второй способ несколько уступает качеством результата. Но тем не менее металл, обработанный в домашних условиях, приобретает ряд неоспоримых преимуществ:

  1. Оксидная пленка выполняет защитные функции, не позволяя влаге проникнуть к металлической основе изделия. Барьер предотвращает образование коррозии, что продлевает сроки эксплуатации предметов быта из титанового сплава.
  2. Анодирование титана укрепляет поверхность изделия и делает его более устойчивым к различным видам внешних повреждений.
  3. Металлические изделия после анодного оксидирования частично или полностью теряют способность проводить электрический ток.
  4. Посуда с оксидным покрытием выдерживает длительный нагрев, обладает антипригарными свойствами и не выделяет токсичных веществ во время приготовлении пищи.
  5. Если изделие из титана прошло оксидную обработку, это не является препятствием к другим видам обработки посредством гальванизации.
  6. Регуляция силы тока и составляющих электролитической жидкости позволяют сделать оксидное покрытие не только более прочным, но и красивым. Применение красителей позволит придать изделию привлекательный внешний вид.

Анодирование титана в условиях производства позволяет провести более глубокую обработку деталей, однако даже в домашних условиях можно добиться повышения износостойкости металлических изделий.

Особенности соединения титановых изделий и их элементов

Если титановое изделие выступает элементом конструкции, то соединить детали, изготовленные из титановых сплавов, позволяет применение таких методов:

  • сварка;
  • пайка
  • механическое соединение с использованием заклепок
  • соединение с применением болтового крепления.

Основным методом соединения выступает сварка, представляющая обычную промышленную технологию. Чтобы обеспечить прочность сварного шва соединение элементов выполняют в среде инертного газа или специальных бескислородных флюсов. Также для этого оберегают шов с применением различных защитных элементов. Взаимодействие расплавленного титана с такими химическими элементами как водород, кислород и азот, содержащимися в воздушной смеси, при нагреве приводит к росту зерна металла, изменению его микроструктуры и хрупкости сварного шва. Сварочные работы выполняют на большой скорости.

Также существует метод сварки в контролируемой среде, который применяется для выполнения работ, требующих большой ответственности. При необходимости соединить небольшие по своим размерам элементы, их помещают в специальные камеры, заполненные инертным газом. В случае соединения элементов большего размера сварочные работы выполняют в специальных герметично изолированных помещениях. Сварка титана — ответственная работа, которая доверяется исключительно подготовленным специалистам, имеющим необходимый практический опыт и навыки.

Пайка титана применяется в случаях, когда проведение сварочных работ невозможно или нецелесообразно. Она также осложнена химическими реакциями. Титан в расплавленном состоянии демонстрирует высокую химическую активность и прочно связан с пленкой окиси, формируемой на поверхностях обрабатываемой детали. Большинство распространенных металлов непригодны в качестве припоя для соединения титановых элементов, для этих целей используются только чистые по своему составу алюминий и серебро.

Механическое соединение элементов из титана с помощью клепок и болтовых креплений также выполняется с применением специальных материалов. В большинстве случаев заклепки изготавливают из алюминия, а применяемые болты покрываются напылением серебра или синтетического тефлона. Это вызвано тем, что при завинчивании титан проявляет свое свойство налипания и задирается, в результате соединения элементов становятся ненадежными, не обеспечивают прочной фиксации. Перейти к списку статей >>

Некоторые особенности резки и сверления титана

Нарезка заготовок является очень сложным технологическим процессом, сопровождающимся использованием специальных инструментов и оборудования. Листы разрезаются гильотинными ножницами, а заготовки из сортового проката — распиливаются механической пилой. Небольшие по диаметру пруты нарезают с помощью токарных станков.

Фрезерование титана остается наиболее сложным способом его обработки. Он налипает на зубьях инструмента (фрезы), что значительно затрудняет работу с заготовкой. Поэтому для такого способа применяют инструменты, изготовленные из твердого сплава металлов, а процесс обработки сопровождают использованием охлаждающих смазок и жидкостей, которые обладают большой вязкостью.

При выполнении операций сверления важно, чтобы стружка, образующаяся в результате сверления, не накапливалась в отводных каналах, в противном случае это может привести к преждевременному износу и поломке инструмента. При сверлении применяют фрезы, изготовленные из быстрорежущей стали

Материалы и оборудование для литья титана

Вследствие высокой активности нагретого титана для его литья приходится применять специфическое оборудование.

Плавильный агрегат и машина литья литейных форм размещаются в герметичной вакуумированной камере. Высокопроизводительные насосы откачивают как воздух на начальном этапе, так и удаляют газы, образующиеся при плавлении и отливке.

Машина для литья литейных форм

Обычные керамические тигли для плавки не подходят, вместо них используют графитовые. В электродуговых печах, где нагрев идет изнутри, используют охлаждаемые емкости, покрытые тонким слоем металлического титана — так называемые гарнисажи. Сверху в тигель опускается расходуемый электрод. Автоматическая подача поддерживает постоянное расстояние от электрода до поверхности расплава по мере его расходования.

Ниже тигля находится блок литейных установок, в который расплав подается под действием своего веса. Для улучшения распределения расплава по форме блок с формами может вращаться.

Время опрокидывания тигля определяется исходя из постоянно контролируемых параметров — температуры тиглей, давления, химического состава расплава.

Пресс-формы из графита

Пресс-формы делают из графита. В последнее время вместо дорогостоящих графитовых форм начинают применять формы из обычных огнеупорных материалов со специальным тонким защитным покрытием, препятствующим вступлению титана в реакцию.

Сложность технологических процессов, высокая цена оборудования и расходных материалов, высокая квалификация персонала делают процесс отливки титана доступным лишь для специализированных промышленных производств.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий