Ледебурит

Фазы в системе “железо-углерод”

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 – 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение – δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого  Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо – цементит и железо – графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе – С) – графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура – содержание углерода. Диаграмма состояния системы железо – углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус – по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % – к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) – как Аr1.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Присутствие в железоуглеродистых сплавах

Чугуны

Ледебуритная смесь возникает, для чистых железоуглеродистых сплавов в интервале концентраций углерода от 2 ,14% до 6,67 %, что соответствует чугунам. Механизм образования ледебурита в доэвтектических (левее точки эвтектики, соответствующей 4,3 углерода, на диаграмме железо-углерод), эвтектических и заэвтектических (правее точки эвтэктики) чугунах различается.

в доэвтектических чугунах

При охлаждении жидкой фазы состава доэвтектического чугуна первым начинает кристаллизоваться аустенит, вследствие чего состав жидкой фазы начинает смещаться в сторону увеличения концентрации углерода (ввиду меньшей растворимости углерода в аустените). По достижении точки эвтектики (4,3 % углерода, 1147 °C) начинается кристаллизация эвтектики — ледебурита. В процессе дальнейшего охлаждения чугуна в интервале температур от 1147 °C до 727 °C аустенит обедняется углеродом и выделяется вторичный цементит. Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита, поэтому практически не виден под микроскопом. При небольшом переохлаждении ниже 727 °C аустенит по эвтектоидной реакции превращается в перлит (разделяется на феррит и цементит). Таким образом, в доэвтектических белых чугунах, при комнатной температуре, ледебурит, как структурная составляющая, присутствует наряду с перлитом и вторичным цементитом.

в эвтектическом чугуне

При охлаждении жидкой фазы состава точки эвтектики до температуры 1147 °C начинается одновременная кристаллизация смеси аустенита и цементита — ледебурита. В дальнейшем аустенит распадается на феррито-цементитную смесь (перлит).

в заэвтектических чугунах

В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит. При комнатной температуре эаэвтектический белый чугун содержит две структурные составляющие: первичный цементит и ледебурит.

Ледебурит может образовываться в сталях если в них, во-первых, содержание углерода достаточно велико (свыше 0,7 % (~1,3 %—1,5 %), что соответствует инструментальным сталям), и, во-вторых, при высоком содержании карбидообразующих легирующих элементов (Cr, W, Ti, Mo и др.). Введение этих легирующих элементов, в больших количествах, уменьшает растворимость углерода в аустените и перлите, что, в определённых случаях, и приводит к возможности выделения эвтектики при, сравнительно, малых содержаниях углерода.
Такие стали (например, быстрорежущая) называют ледебуритными.

Присутствие в железоуглеродистых сплавах

Чугуны

Ледебуритная смесь возникает в чистых железоуглеродистых сплавах в интервале концентраций углерода от 2 % до 6,67 %, что соответствует чугунам. Механизм образования ледебурита в доэвтектических (левее точки эвтектики, соответствующей 4,3 углерода, на диаграмме железо-углерод), эвтектических и заэвтектических (правее точки эвтэктики) чугунах различается.

в доэвтектических чугунах

При охлаждении жидкой фазы состава доэвтектического чугуна первым начинает кристаллизоваться аустенит, вследствие чего состав жидкой фазы начинает смещаться в сторону увеличения концентрации углерода (ввиду меньшей растворимости углерода в аустените). По достижении точки эвтектики (4,3 % углерода, 1147 °C) начинается кристаллизация эвтектики — ледебурита. В процессе дальнейшего охлаждения чугуна в интервале температур от 1147 °C до 727 °C аустенит обедняется углеродом и выделяется вторичный цементит. Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита, поэтому практически не виден под микроскопом. При небольшом переохлаждении ниже 727 °C аустенит по эвтектоидной реакции превращается в перлит. Таким образом, в доэвтектических белых чугунах, при комнатной температуре, ледебурит, как структурная составляющая, присутствует наряду с перлитом и вторичным цементитом.

в эвтектическом чугуне

При охлаждении жидкой фазы состава точки эвтектики до температуры 1147 °C начинается одновременная кристаллизация смеси аустенита и цементита — ледебурита. В дальнейшем аустенит распадается на феррито-цементитную смесь (перлит).

в заэвтектических чугунах

В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит. При комнатной температуре эаэвтектический белый чугун содержит две структурные составляющие: первичный цементит и ледебурит.

Ледебурит может образовываться в сталях если в них, во-первых, содержание углерода достаточно велико (свыше 0,7 % (~1,3 %—1,5 %), что соответствует инструментальным сталям), и, во-вторых, при высоком содержании карбидообразующих легирующих элементов (Cr, W, Ti, Mo и др.). Введение этих легирующих элементов, в больших количествах, уменьшает растворимость углерода в аутените и перлите, что, в определённых случаях, и приводит к возможности выделения эвтетики при, сравнительно, малых содержаниях углерода.Такие стали (например, быстрорежущая) называют ледебуритными.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Фазовая диаграмма Железо — Углерод.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Чтение диаграммы железо-углерод

Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.

Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.

Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (~1.5%).

Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (~3.5%).

Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:

  • в жидкой фазе и аустените в области AEC;
  • в жидкой фазе в области CDF (концентрация углерода в цементите, конечно, постоянна – 6,67%);
  • в аустените в области SEFK;
  • в феррите в области QPKL;
  • в феррите и аустените в области GPS.

 Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.

По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.

Некоторые элементы диаграммы железо-углерод

Выделим несколько границ на диаграмме железо-углерод:

  • линия ACD. Линия ликвидус. При охлаждении сплавов ниже нее начинается их кристаллизация;
  • линия AECF. Линия солидус. При охлаждении сплавов ниже нее весь сплав переходит в твердое состояние;
  • линия ECF. Иногда называется линией ледебуритного превращения. При охлаждении сплавов с содержанием углерода выше 2,14% ниже нее жидкая фаза превращается в ледебурит;
  • линия PSK. Линия перлитного превращения. При охлаждении сплавов ниже нее аустенит превращается в перлит.

 Отметим несколько важных точек на диаграмме:

  • точка E. Точка максимального насыщения аустенита углеродом – 2,14%, при температуре 1147°С;
  • точка P. Точка максимального насыщения феррита углеродом – 0,025%, при температуре 727°С;
  • точка S. Точка «0,8% С-727°С» превращения аустенита с концентрацией углерода 0,8% в перлит (эвтектоид) той же средней концентрации;
  • точка C. Точка «2,14 % С-1147°С» превращения жидкости с концентрацией углерода 2,14% в ледебурит (эвтектику) той же средней концентрации.

Часто значения температур, при которых происходят структурные изменения конкретного сплава обозначают буквами A:

  • A1 – линия PSK;
  • A2 – линия MO – точка Кюри, в которой происходит изменение магнитных свойств сплавов;
  • A3 – температуры, соответствующие линии GS;
  • Acm – температуры, соответствующие линии SE.

Поскольку температуры фазовых переходов при нагреве и охлаждении слегка отличаются, то часто вводят дополнительные буквенные обозначения:

  • с – для температур фазовых переходов при нагреве;
  • r – при охлаждении,

например, Ac1 или Ar1.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Присутствие в сплавах

Ледебурит в основном расположен в чугунах (эвтектический, заэвтектический и доэвтектический) и нержавеющих сплавах.

Чугун

Примесь ледебурита появляется в пространстве чистого железоуглеродистого состава в пределах углеродного концентрата 2.15-6.68%.

Стоит запомнить, что эвтектический, заэвтектический и доэвтектический металлы, включают в себя несколько механизмов зарождения:

Доэвтектический. В то время как жидкая фаза в железе начинает своё охлаждение, первым процесс кристаллизации проходит аустенит, в результате чего составляющие фазы постепенно изменяются в направлении возрастания углеродной консистенции. Достигнув точки эвтектики в режиме 1145 °Cи 4.35% углерода, происходит этап перестройки ледебурита. Постепенно охлаждаясь до 726 °C, имеющиеся компоненты начинают реструктуризацию, так как аустенит объединяется с углеродом, после чего образуется цементит (вторичный). Далее, элемент, выделяясь на краях капсул аустенита, производит слияние с цементитом первичным. Пройдя охлаждение ниже 726 градусов, аустенит проводит образование в перлит.

Эвтектический. Охлаждаясь до 1145 °C, жидкий поток эвтектики ледебурита начинает единовременную кристаллизацию помеси дополнительных веществ. В конечном итоге аустенит образовывает распад на цементит и феррит.

Заэвтектический. Нагреваемый элемент проходит этап формирования из жидкого состояния в цементит первичный, образующий плоские стержни, а следом зарождается ледебурит. Комнатная температура способствует содержанию первичного цементита и ледебурита в белом заэвтектическом чугуне.

Сталь

Ледебурит образовывается в железе в том случае, если концентрация углеродной консистенции велика, но не превышает 0.8%, такой показатель соответствует инструментальной стали. Второстепенная задача – наличие содержания легирующих карбидообразующих веществ, в том числе хрома, вольфрама и титана.

Химические свойства

Серый, относительно твёрдый, термически устойчивый. Не реагирует с водой, щелочами, гидратом аммиака.

разлагается при температуре выше 1650 °C:

Разлагается кислотами (конц.):

Реагирует с кислородом:

Температура плавления цементита

Согласно данным Гуляева А.П. температура плавления цементита — около 1600°.

По расчётным данным , виртуальная температура плавления цементита оценивается равной 1200-1450°. Возможно, цементит испытывает инконгруэнтное разложение при температурах 1250-1300°.

Первичный цементит

Различают первичный, вторичный и третичный цементит. Первичный цементит выделяется из жидкости. Первичный цементит выделяется только при закалке сплавов, содержащих до 5,5% (по массе) углерода . Форма первичного цементита: длинные крупные пластины.

Вторичный цементит

Вторичный цементит выделяется из аустенита — γ-твёрдого раствора. При охаждении выделение происходит по линии ES (диаграмма Fe-C). Форма вторичного цементита: цементитная сетка, цементит по границам зёрен.

Третичный цементит

Третичный цементит выделяется из феррита. Форма третичного цементита: пластинки и прожилки, а также выделения в виде иголок в ферритном зерне. При более быстром охлаждении часть углерода остаётся в твёрдом растворе; выделение третичного цементита подавляется.

Другие формы существования цементита (по Хоу): цементит перлита, цементит ледебурита, цементит Стеда, зернистый цементит, специальные карбиды.

Автор обзора: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
  2. Гуляев А.П. Металловедение. — М.: Металлургия, 1977. — УДК669.0(075.8)
  3. Диаграммы состояния двойных и многокомпонентных систем на основе железа: Справ. изд./ Банных О.А., Будберг П.Б., Алисова С.П. и др. М.: Металлургия, 1986. 440 с. УДК 669.15.017.12(083)
  4. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ изд. Пер. с нем. М.: Металлургия, 1982. 480 с.
  5. H. K. D. H. Bhadeshia. The Structure of Cementite // Department of Materials Science and Metallurgy/ University of Cambridge , Last updated 19/6/2008 — Режим доступа: http://www.msm.cam.ac.uk/, свободный. — Загл. с экрана.

См. также Железоуглеродистые сплавы, Диаграмма состояния системы железо-цементит.

Классификация железоуглеродистых сплавов

Классификация железоуглеродистых сплавов в зависимости от концентрации углерода в сплаве:

  1. C<0,025%. Техническое железо. При комнатной температуре будет состоять только из феррита;
  2. 0,025<C<2,14. Стали:
    • 0,025<C<0,8. Доэвтектоидные стали. Состав: феррит + перлит (или третичный цементит);
    • C=0,8. Эвтектоидная сталь. «Чистый» перлит;
    • 0,8<C<2,14. Заэвтектоидная сталь. Состав: вторичный цементит + перлит;
  1. 2,14<C<6,67. Чугуны:
    • 2,14<C<4,3. Доэвтектический чугун. Состав: ледебурит + перлит + вторичный цементит;
    • C=4,3. Эвтектический чугун. «Чистый»  ледебурит;
    • 4,3<C<6,67. Заэвтектический чугун. Состав: ледебурит + цементит.

Техническое железо выделяет то, что оно состоит исключительно из феррита. Который и определяет его свойства: мягкость, чрезвычайную пластичность и т.д.

Чугуны же выделяет наличие ледебурита, придающего им хрупкость. Поэтому чугуны не могут подвергаться ковке. Зато обладают лучшими литейными свойствами (чем стали), обусловленными наличием легкоплавкого ледебурита.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Присутствие в железоуглеродистых сплавах

Чугуны

Ледебуритная смесь возникает, для чистых железоуглеродистых сплавов в интервале концентраций углерода от 2 ,14% до 6,67 %, что соответствует чугунам. Механизм образования ледебурита в доэвтектических (левее точки эвтектики, соответствующей 4,3 углерода, на диаграмме железо-углерод), эвтектических и заэвтектических (правее точки эвтэктики) чугунах различается.

в доэвтектических чугунах

При охлаждении жидкой фазы состава доэвтектического чугуна первым начинает кристаллизоваться аустенит, вследствие чего состав жидкой фазы начинает смещаться в сторону увеличения концентрации углерода (ввиду меньшей растворимости углерода в аустените). По достижении точки эвтектики (4,3 % углерода, 1147 °C) начинается кристаллизация эвтектики — ледебурита. В процессе дальнейшего охлаждения чугуна в интервале температур от 1147 °C до 727 °C аустенит обедняется углеродом и выделяется вторичный цементит. Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита, поэтому практически не виден под микроскопом. При небольшом переохлаждении ниже 727 °C аустенит по эвтектоидной реакции превращается в перлит (разделяется на феррит и цементит). Таким образом, в доэвтектических белых чугунах, при комнатной температуре, ледебурит, как структурная составляющая, присутствует наряду с перлитом и вторичным цементитом.

в эвтектическом чугуне

При охлаждении жидкой фазы состава точки эвтектики до температуры 1147 °C начинается одновременная кристаллизация смеси аустенита и цементита — ледебурита. В дальнейшем аустенит распадается на феррито-цементитную смесь (перлит).

в заэвтектических чугунах

В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит. При комнатной температуре эаэвтектический белый чугун содержит две структурные составляющие: первичный цементит и ледебурит.

Ледебурит может образовываться в сталях если в них, во-первых, содержание углерода достаточно велико (свыше 0,7 % (~1,3 %—1,5 %), что соответствует инструментальным сталям), и, во-вторых, при высоком содержании карбидообразующих легирующих элементов (Cr, W, Ti, Mo и др.). Введение этих легирующих элементов, в больших количествах, уменьшает растворимость углерода в аустените и перлите, что, в определённых случаях, и приводит к возможности выделения эвтектики при, сравнительно, малых содержаниях углерода.
Такие стали (например, быстрорежущая) называют ледебуритными.

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector