Ковкий чугун

Классификация чугунов

Металлургическая промышленность выпускает разные виды чугуна. Сорт зависит от участвующих в сплаве форм графита или цементита и остальных компонентов.

Серый чугун (СЧ)

Обозначают буквами СЧ. На разрезе – серовато-черный, что обусловлено присутствием графита, этого природного цвета. В составе также присутствуют различные примеси, в том числе и кремний. Этот вид чугуна, свободно поддающийся резке и часто употребляющийся в машиностроительной отрасли для «неосновных» деталей, при добавлении фосфора становится жидкотекучим. Применим для всех видов литья, в том числе художественного.

Белый чугун

На разрезе светлый, благодаря присутствию карбида железа. Подвергается дальнейшей переработке на ковкий чугун и сталь. Поэтому сорт называют передельным. Свойства – хрупкость и твердость, слабо обрабатываемый, не годится для самостоятельного использования. Твердый, слабо подвержен обработке, хрупкий – такие свойства делают его непригодным для самостоятельного использования.

Ковкий чугун

Обозначение – КЧ. При длительном отжиге белый чугун преобразуется в ковкий.

Свойства – не поддаётся обработке давлением, но при этом обладает повышенной сопротивляемостью ударам и прочностью при растяжении. Ковкий чугун подходит для изготовления деталей усложненной конфигурации.

Высокопрочный 

Маркируют буквами ВЧ. Получают при введении в серый жидкий чугун спецдобавок, для придания графиту сфероидальной формы. Высокопрочный вид чугуна применяют для изготовления ответственных деталей – шестерён, коленвалов, поршней, которые должны иметь высокую износоустойчивость.

Форма выпуска передельного и литейного видов – специальные формы – чушки. Современные технологии позволяют получить полуфабрикаты, квадратные, листовые, пластинчатые, брусковые заготовки разновидностей чугуна.

В зависимости от назначения и химсостава выделяют следующие разновидности чугуна:

  1. ферросплавы 
  2. легированные.

Они имеют названия, соответствующие металлам-добавкам:

  • циркониевые;
  • хромистые;
  • ванадиевые; 
  • медные;
  • титановые.

Легированные виды более всего востребованы в производстве агрегатов, механизмов, узлов и деталей, работающих в особо неблагоприятных средах и условиях.

Чугун, отличающийся увеличенным процентным включением ферромарганца или ферросилиция, относят к специальным – ферросплавам. Добавляются в сталеплавильном производстве для выделения кислорода – раскисления.

К легированным чугунам относят:

  1. Антифрикционные;
  2. Жаростойкие;
  3. Жаропрочные;
  4. Коррозионностойкие.

Антифрикционные виды маркируются первыми буквами АЧ. Например, АЧС – это антифрикционный серый чугун. Ещё можно увидеть маркировку АЧВ – антифрикционный высокопрочный чугун и АЧК – антифрикционный ковкий.

Жаростойкий вид маркируют буквами ЖЧ. Далее указывается буква обозначающая легирующий элемент. Например, ЖЧХ-2,5. Это жаростойкий чугун с добавлением хрома 2,5%.

К жаростойким относят марки: ЧН19ХЗШ.

К коррозионностойким: маркировка ЧНХТ, ЧН1МХД

Еще их называют специальными чугунами.

Как производится «пластичное железо» (ВЧШГ)?

Выбор химической композиции базовых сплавов предпочтителен с целью получения свободной от углерода отлитой структуры. Другие факторы, которые также рассматриваются, это:

  1. Влияние различных элементов на форму.
  2. Распределение графита.
  3. Структура матрицы.

На все отмеченные факторы влияет скорость охлаждения.

Присутствие углерода

Содержание углерода в промышленном ковком чугуне составляет 3,0 — 4,0%, но желательны гораздо более узкие пределы диапазона. На количество клубеньков напрямую влияет содержание углерода. Отмечается большее количество сфероидов при более высоком содержании углерода.

Увеличение содержания углерода также увеличивает литейную способность за счёт улучшения текучести и подачи. Уровень содержания углерода должен быть связан с формулой эквивалента углерода:

CE = %C + 1/3 %Si + 1/3 %P

Углеродные эквиваленты значительно превышают параметр 4,3, способствуют развитию и росту графитовых сфероидов. Поскольку графит намного менее плотный, чем расплавленный чугун, эти сфероиды способны становиться плавучими и всплывают к поверхности литья. Такое развитие событий приводит к сильной сегрегации углерода.

Присутствие кремния

Очень сильным активатором, не содержащим карбидов, является кремний. Помимо активации графита и улучшения его распределения, кремний является наиболее мощным полезным элементом для повышения прочности, и до 4% увеличивает пластичность в литом состоянии.

Ассортимент изделий, которые изготовлены на базе пластичного чугуна. Каждая из этих деталей отмечается активным использованием и применением в самых разных конструкциях

Кремний, будучи стабилизатором феррита, увеличивает твёрдость, особенно в отожженном состоянии. Кремний также влияет на распределение графитовых сфероидов. Чем выше содержание кремния, тем больше количество узелков и тем больше содержание феррита.

Однако известно, что более высокое содержание кремния способствует образованию графита массивного типа, что приводит к ухудшению свойств отливок на основе тяжёлого ковкого чугуна. Другими потенциально нежелательными факторами, влияющими на увеличение содержания кремния, являются:

  • снижение энергии удара,
  • повышение температуры ударного перехода,
  • снижение теплопроводности.

Общий диапазон для коммерческого производства определен в пределах 1,8 — 2,8%.

Присутствие марганца

Единственная цель при выборе процентного содержания марганца – следует избегать в процессе литья образования карбида. Предпочтительно, чтобы такое образование не превышало 0,5%.

Дополнительным преимуществом пониженного содержания марганца является снижение тенденции поглощения водорода и минимизации опасности пробоин. Следует отметить: содержание марганца никогда не следует выбирать с целью контроля структуры матрицы.

Содержание серы

Контроль серы для производства высокопрочного чугуна с шаровидным графитом видится очень важным моментом. Если базовый металл, используемый при производстве высокопрочного чугуна с шаровидным графитом, содержит более 0,015% серы, потребуются увеличивать количества магния или других нодулирующих агентов. Кроме того, появляются проблемы контроля дефектов, возрастает объём окалины. Поэтому в процессе литья оптимальным видится содержание серы в пределах 0,01%.

Содержание фосфора

Фосфор снижает пластичность, ударную вязкость и свариваемость, и эти факторы отрицательно сказывается на прочности литья. По этим причинам большинство спецификаций допускают максимум содержания фосфора — 0,03%. Удачной практикой является сохранение содержания фосфора ниже 0,04%. В некоторых случаях, когда требуются:

  • пониженная скорость ползучести металла,
  • повышенная теплопроводность,
  • сопротивление истиранию,

содержание фосфора следует поддерживать на более высоком уровне.

Содержание магния

Магний добавляют для нодуляризации, как правило, в легированной форме. Технической литературой предусматривалось содержание остаточного магния в образованном высокопрочном чугуне с шаровидным графитом в пределах 0,02 — 0,06%.

Чугун с шаровидным графитом получают обработкой жидкого (расплавленного) чугуна подходящего состава чистым магнием, непосредственно перед началом процесса литья

Указанный выше диапазон обоснован расчётным количеством легированного магния с учётом факторов, таких как:

  • температура обработки,
  • эффективность процесса обработки,
  • процентное содержание магния в сплаве.

Теория железоуглеродистых структур

Карбон с ферумом могут образовывать несколько различных видов сплавов по типу кристаллической решетки, что отображается на варианте микроструктуры.

  1. Твердый раствор проникновения в α-железо – феррит.
  2. Твердый раствор проникновения в γ-железо – аустенит.
  3. Химическое образование Fe3C (связанное состояние) – цементит. Первичный образовывается путем быстрого охлаждения из жидкого расплава. Вторичный – более медленное снижение температуры, из аустенита. Третичный – постепенное охлаждение, из феррита.
  4. Механическая смесь зерен феррита и цементита – перлит.
  5. Механическая смесь зерен перлита или аустенита и цементита – ледебурит.

Для чугунов характерна особая микроструктура. Графит может находиться в связанном виде и образовывать вышеперечисленные структуры, а может пребывать в свободном состоянии в форме разных включений. На свойства влияют как основные зерна, так и эти образования. Графитовыми фракциями в металле являются пластины, хлопья или шары.

Пластинчатая форма характерна для серых железоуглеродистых сплавов. Она обуславливает их хрупкость и ненадежность.

Включения хлопьеобразные имеют ковкие чугуны, чем положительно влияют на их механические показатели.

Шарообразная структура графита еще более улучшает качества металла, влияя на увеличение твердости, надежности, выдержки значительных нагрузок. Такими характеристиками обладает чугун высокопрочный. Ковкий чугун свойства свои обуславливает ферритной или перлитной основами с наличием хлопьеобразных графитовых включений.

Объёмы производства

Чугун, отлитый в виде чушек

Выпуск чугуна из доменной печи

Мировое производство чугуна в 2015 году составило 898,261 млн тонн, что на 3,2 % ниже, чем в 2008 году (927,123 млн т). Мировая топ-десятка стран-производителей чугуна выглядит следующим образом:

1 Китай 543,748 млн т
2 Япония 66,943 млн т
3 Россия 43,945 млн т
4 Индия 29,646 млн т
5 Южная Корея 27,278 млн т
6 Украина 25,676 млн т
7 Бразилия 25,267 млн т
8 Германия 20,154 млн т
9 США 18,936 млн т
10 Франция 8,105 млн т

За четыре месяца 2010 года мировой выпуск чугуна составил 346,15 млн тонн. Этот результат на 28,51 % больше по сравнению с аналогичным периодом 2009 года.

Примечания

  1. 12 Начало чугунолитейного производства
  2. Китайские монеты
  3. Археологи нашли на Куликовом поле золотоордынский котел 14 века
  4. Терехова Н. Н. Технология чугунолитейного производства у древних монголов
  5. Из чего отливают колокола
  6. История огнестрельного оружия с древнейших времён до 20 века
  7. Артиллерийское орудие (история изобретения)
  8. Про царскую артиллерию и литьё пушек
  9. Причины завоевания Китая маньчжурами
  10. Хулишан крепость
  11. История паровоза
  12. Чугунок для русской печи
  13. Доменная революция
  14. Викторианский и георгианский стиль и каминное оформление
  15. Подземный Лондон: Водопровод и канализация
  16. Мировое производство чугуна за 2009 год снизилось на 3,2 %
  17. В мире растет производство чугуна

Виды чугуна

В зависимости от состояния углерода в чугуне различают:

  • Самым распространённым является серый чугун. Он имеет высокую прочность, малую усадку, низкую температуру кристаллизации, хорошо обрабатывается. Из него получаются качественные корпуса и детали для машиностроения (поршни, цилиндры, корпуса котлов и запорной арматуры). А также хорошо себя зарекомендовали чугунные детали, работающие с безударной нагрузкой: станины станочного парка, различные валы и шкивы. Содержание углерода — от 2,4 до 3,8%. Маркировка — СЧ.
  • Высокопрочный чугун (ВЧ) получают с помощью специальной термообработки и добавлению присадок (легирование). Графит в нём имеет шаровидную форму и при плавке соединяется с элементами кристаллической решётки железа. Это даёт улучшение механических свойств, что позволяет изготовить надёжные коленчатые валы, крышки цилиндров, литые трубы и отопительные приборы. По своим характеристикам этот вид приближается к некоторым маркам стали.
  • Ковкий чугун идёт на изготовление художественных изделий, металлического декора, но главным образом на производство коллекторов и производство деталей сельхозтехники и автомобилей, которым приходится работать в сложных условиях. Наряду с другими, он используется в электротехнической промышленности. Этот сплав представляет собой разновидность белого.
  • Белый чугун. Назван так из-за характерного белого цвета в месте разломов. Содержит около трёх процентов углерода в виде карбида и цементита. Хрупок и ломок, поэтому применяется при изготовлении деталей, не подвергающихся особым нагрузкам.
  • Переходной стадией между СЧ (серым) и БЧ (белым) является половинчатый чугун. В нём графит и карбид присутствуют в равных долях, при общем содержании углерода 3,5—4,15%. Материал применяется при производстве деталей, работающих в условиях трения.

Особенности производства ковкого чугуна

Углерод в этом виде чугуна присутствует в пределах от 2,4 до 2,8%. Также в него входят Si, Mn, S, P, количество которых зависит от необходимых свойств материала. Ковкий чугун производится из отливок белой разновидности изделий. В них углерод полностью связан железом и представлен карбидом железа (цементитом Fe3C). При отжиге заготовок при температуре 950-970оС, добиваются освобождения графита из карбида железа и аустенита (А). В результате он кристаллизуется, образуя вид хлопьев. Окончательное формирование графитовых хлопьев в чугуне происходит в температурном интервале 760–720оC, что продемонстрировано на диаграмме Fe–Fe3C.

На ней: А – это аустенит, представляющий твердые внедрения атомов углерода в структуру ячейки железа; Г– это графит; Ц – это цементит; П – перлит, представляющий соединение феррита и цементита в эвтектоидной области при распаде аустенита.

Процесс термического отжига проводится в два этапа:

  1. Сначала заготовки нагревают до 950–1000оС и выдерживают в нагретом виде до окончания распада ледебурита (цементит + аустенит) на графит и аустенит.
  2. Затем постепенно охлаждают заготовки до области температур 760–720оС, где аустенит дает дополнительный цементит (вторичный), входящий в состав перлита. При дальнейшем охлаждении происходит распад перлита на феррит и графит.

Графитизация, особенности ковкого чугуна, понятие о ферритном и перлитном КЧ

В металлургии получают ковкий чугун методом графитизации белого доэвтектического чугуна, содержащего графит в количестве 2%-4,3%. При графитизации происходит такой отжиг, при котором распадается цементит (карбид железа), весь углерод или его часть преобразуется в графит (углерод отжига). Углерод в КЧ является важным элементом, который обуславливает его механические свойства, чем выше марка чугуна, тем ниже содержание графита. Благодаря технологическому процессу, привносящему преобразования в состав сплава, КЧ приобретает пластичность, он по своим свойствам находится между серым чугуном и сталью. В отличие от стали, сплав имеет текучесть, демпфирующую способность (поглощение вибраций), более высокую износостойкость.

Физические свойства ковкого чугуна.

КЧ производят в камерных и тоннельных печах непрерывного действия.

Неоспоримыми преимуществами КЧ являются:

  • однородность;
  • отсутствие напряжений;
  • высокие механические и антикоррозионные свойства;
  • великолепная устойчивость в среде влажного воздуха, топочных газов, воды;
  • пластичность;
  • прочность;
  • КЧ поддается сварке, расчеканке, запрессовке, холодной и горячей правке, обработке резанием.

Высокая прочность КЧ объясняется незначительным влиянием хлопьевидной структуры на механические характеристики металлического ядра. Изделия из такого сплава характеризуются вязкостью и пластичностью, хорошим сопротивлением ударным нагрузкам, но ковке изделия не подвергаются, их отливают. Недостатками материала является сложная технология, длительность процесса производства продукции.

По способу производства КЧ классифицируют на ферритный класс Ф (черносердечный) и перлитный класс П (белосердечный). Ферритный КЧ производят двухстадийным графитизирующим отжигом белого чугуна. Перлитный КЧ получаются в процессе отжига в окислительных средах. В итоге происходит изменение структуры чугуна и обезуглероживание. Это один из самых прочных типов чугуна. В сплаве главная высокопрочная масса с металлической структурой дополняется превосходной формой структуры графита и его распределением.

Ферритный ковкий чугун

Ферритный ковкий чугун обладает низкой твердостью и сравнительно низкой износоустойчивостью. По своим свойствам он уступает перлитному чугуну, но лучше ферритного серого чугуна. Он хорошо прирабатывается к поверхностям трения, обладает высокой вязкостью и прочностью. Перлитный ковкий чугун обладает высокой твердостью и прочностью, но труднее прирабатывается к валу по сравнению с ферритным и феррито-перлитным чугуном. Он обладает более высокой износоустойчивостью, чем ферритный ковкий чугун.

Ферритный ковкий чугун хорошо поддается запрессовке, расчеканке и легко заполняет зазоры, имеет хорошую обрабатываемость резцом и может широко применяться вместо стали для изготовления неответственных деталей. Перлитный ковкий чугун может применяться как заменитель бронзы а узлах трения.

Ферритные ковкие чугуны ( КЧ 33 – 8, КЧ 37 – 12) имеют более высокую пластичность, а перлитные ( КЧ 50 – 4, КЧ 60 – 3) более высокую прочность. Применяют ковкий чугун для деталей небольшого сечения, работающих при ударных и вибрационных нагрузках.

Ферритный ковкий чугун ( GTS) получается в результате отжига в нейтральной атмосфере. Его структура по всему сечению отливки состоит из феррита и углерода отжига. Допустимо небольшое количество перлита.

Ферритный ковкий чугун применяется прималыхдавлениях ( ру 20кгл1: см сек), особенно при малых скоростях, и работе со смазкой.

Ферритный ковкий чугун в изломе имеет черный бархатистый цвет с тонкой серой каймой.

Ферритный ковкий чугун имеет большое применение в автомобилестроении и сельскохозяйственном машиностроении.

Ферритный ковкий чугун как обладающий повышенной пластичностью ( вязкостью) и в этом отношении превосходящий перлитный получил преимущественное применение в машиностроении для изготовления деталей, подвергаемых динамическим нагрузкам и сложным напряжениям.

Ферритный ковкий чугун получается отжигом в нейтральной среде. Твердость изделия одинаковая по всему сечению. В изломе чугун черный, бархатистый.

Ферритный ковкий чугун имеет несколько большую вязкость, но меньшую коррозиестойкость и износоустойчивость.

Ферритный ковкий чугун в изломе имеет черный бархатистый цвет с тонкой серой каймой.

Обрабатываемость ферритного ковкого чугуна весьма высока. Включения графита оказывают смазывающее действие и дробят стружку.

Микроструктура ферритного ковкого чугуна после отжига состоит из зерен феррита и круглых графитных выделений ( фиг. В сердцевине такого чугуна перлита не должно быть, но на его поверхности может наблюдаться корка перлита при почти полном отсутствии здесь графита. Это объясняется обезуглероживанием поверхности при отжиге. Вследствие обеднения твердого раствора на поверхности углеродом и центрами графитизации чугун здесь плохо поддается отжигу, сохраняя, таким образом, перлит.

Отжигом на ферритный ковкий чугун достигается разложение цементита эвтектического, цементита вторичного, цементита эвтек-тоидного и получение конечной структуры феррит углерод отжига.

Отжиг на ферритный ковкий чугун ведется в печах различного типа ( см. стр.

Сфера использования

Применение заготовок из этого чугуна обосновано, с экономической точки зрения. Они значительно дешевле, чем отливки из стали.

Ковкие чугуны широко используются в тракторостроении и автомобилестроении и других сферах промышленности:

  • Для машиностроительных предприятий, как правило, производятся отливки на ферритной основе и совсем немного на перлитной. Но литейно-механические свойства последнего значительно выше.
  • Перлитный ковкий сплав нашел свое применение в сельской промышленности как современный конструкционный сплав и заменитель углеродистой стали. Области использования такого сплава определяют его высокие эксплуатационные, конструкционные и технологические свойства и зачастую лучшее сочетание этих особенностей.

Ключевой особенностью сплава является его применение в производстве как деталей с небольшим весом (например, поршневые кольца), так и крупных элементов с весом до 150 т независимо от толщины стенки детали. Элементы применяются не только в литом виде, но и после необходимых термической и механической обработок.

Яркими образцами использования такого вида материала, заменившего стальные изделия, считаются коленчатые валы для двигателей больших дизельных автомобилей и тракторов. Достоинством применения чугунных изделий является не только низкая цена по сравнению с фасонными стальными деталями, но и еще превосходство их по эксплуатационным свойствам (гашение вибрации, работа при высоких температурах).

Получение – ковкий чугун

Получение ковкого чугуна осуществляется следующим образом: сначала отливают детали из белого чугуна, после чего их подвергают отжигу в специальных печах. Отжиг изделий может производиться в нейтральной или окислительной среде.

Для получения ковкого чугуна необходимо белый чугун нагреть до 950 – 1000 С и затем после длительной выдержки охладить с малой скоростью до обычной температуры. Структура ковкого чугуна характеризуется графитом в виде хлопьевидных включений. Такая форма включений графита ( по сравнению в чешуйчатыми включениями, характерными для серого чугуна) в меньшей степени снижает механические свойства ковкого чугуна.

Режим отжига ковкого чугуна, модифицированного алюминием. висмутом ( 0 008. % н борон ( 0 ( Н2 %.

Для получения ковкого чугуна с высокими механическими свойствами необходимо, чтобы содержание углерода в нем было минимальным. Содержание углерода в белом чугуне колеблется в пределах 2 2 – 3 2 %; при содержании 2 2 % С ухудшаются технологические свойства чугуна.

Микроструктура ковкого чугуна. хЮО.

Для получения ковких чугунов отливки из белых чугунов подвергают графитизирующему отжигу в отжигательных печах. Ковкие чугуны, так же как и серые, имеют структуру, состоя – щую из стальной основы и выделений графита. Разница только в; том, что в ковких чугунах он выделяется в процессе отжига.

Для получения высококачественного ковкого чугуна необходимо обеспечить низкое содержание углерода и кремния, определяющее структуру основной металлической массы, количество и форму графита в чугуне.

Для получения ковких чугунов повышенной прочности и износоустойчивости применяются специальные режимы термической обработки белого чугуна.

Процесс получения ковкого чугуна ( при отжиге без окисле ния углерода) состоит в длительном нагревании отливок из белого чугуна до более или менее полного выделения связанного углерода в виде графита. При отжиге с окислением чугун засыпают при томлении окалиной или рудой. Содержащийся в руде или окалине кислород диффундирует в горячий металл и окисляет преимущественно углерод чугуна, диффундирующий в свою очередь по направлению к поверхности.

Процесс получения ковкого чугуна длителен и дорог, этим и объясняется ограниченное распространение его в промышленности.

Способ получения ковкого чугуна также отличается от способа получения серых ( литейных) чугунов. Ковкий чугун образуется путем длительного нагрева и выдержки белого чугуна при высоких температурах.

При получении ковкого чугуна без окисления углерода отливки из белого чугуна помещают в жароупорные ящики, засыпают песком и медленно нагревают приблизительно до 900 – 1000, выдерживают при этой температуре до 25 час. Особенно медленное охлаждение ( 10 град / сек) дают при переходе через критическую точку А ( от 740 до 680), для того чтобы весь цементит разложился и структура отожженного чугуна представляла феррит с графитом в форме углерода отжига в крупных скоплениях. Вследствие этого количество выделившегося углерода отжига оказывается сравнительно малым. Выплавка чугуна с таким низким содержанием углерода может производиться в электрических или пламенных печах, благодаря его относительно высокой температуре плавления.

При получении ковкого чугуна с окислением углерода содержание последнего допускается в исходном белом чугуне в большем количестве – до 3 3 %, так как часть его выгорает. Во внутренних слоях, в центре наблюдается феррито-перлйтная или даже одна перлитная структура. Графитных включений при этом способе отжига в чугуне меньше, а тонкостенные мелкие отливки могут даже получить сплошную ферритную основу.

Основным процессом получения ковкого чугуна является отжиг, при котором происходит графитизация или обезуглероживание отливок.

Термическая обработка для получения ковкого чугуна типа 4 заключается в полном проведении первой стадии графитизации, после-дующей закалке и отпуске при темпе – wo ратуреббО – 700 С ( фиг. После проведения первой стадии графитизации устанавли – с вается равновесие аустенит – углерод отжига. При последующем быстром охлаждении в основной металлической массе происходят превращения, аналогичные превращениям в стали при ее закалке.

Чугун серый

Серый чугун широко применяется в машиностроении. Такое название он получил по серому цвету излома, обусловленному наличием в структуре чугуна свободного углерода в виде графита. По виду металлической основы различают серые чугуны перлитные, перлитно-ферритные и ферритные.

Таблица 1. Чугуны серые литейные, их основные свойства и применение

Марка σв МПа НВ Свойства и применение
Сч10 275 139-274 Малоответственные отливки с толщиной стенок до 15 мм (корпуса, крышки, кожухи и др.), детали, для которых прочностная характеристика не является обязательной,- опоки, арматуру, рамки, сковороды, декоративные детали, массивные строительные колонны, фундаментные плиты
СЧ15 314 160-224 Малоответственные отливки с толщиной стенок 10 — 30 мм (трубы, корпуса клапанов, вентили при давлении — до 20 МПа и др.), корпусные малонагруженные детали, подмоторные плиты, рычаги, шкивы, маховики, емкости для масла и охлаждающей жидкости, корпуса фильтров, фланцы, крышки, звездочки цепных передач
СЧ18 354 167-224 Ответственные отливки с толщиной стенок 10 — 20 мм (шкивы, зубчатые колеса, станины, суппорты и др.)
СЧ20 397 167-236 Ответственные отливки с толщиной стенок до 30 мм (блоки цилиндров, поршни, тормозные барабаны, каретки и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются требования герметичности при давлении до 8 МПа (80 кгс/см2), корпусов, коробок передач, шпиндельных бабок, балансиров, планшайб, гильз, кареток, цилиндров, насосов, золотников, арматуры, компрессоров
СЧ25 450 176-245 Ответственные отливки с толщиной стенок до 40 мм (кокильные формы, поршневые кольца и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются повышенные требования к герметичности
СЧ3О 490 177-250 Ответственные отливки с толщиной стенок до 60 мм (поршни, гильзы дизелей, рамы, штампы и др.), для изготовления кронштейнов, салазок столов и суппортов, деталей с поверхностной закалкой, цилиндров, корпусов насосов, дизелей и двигателей внутреннего сгорания, поршневых колец, коленчатых и распределительных валов
СЧ35 СЧ45 540 193-264 Ответственные высоконагруженные отливки с толщиной стенок до 100 мм (малые коленчатые валы, детали паровых двигателей и др.) деталей, для изготовления к которым предъявляются требования герметичности при давлении свыше 8 МПа

Графит обладает низкими механическими свойствами. Он нарушает целостность металлической основы. Располагаясь между зернами металлической основы, графит ослабляет связь между ними. Поэтому серый чугун плохо сопротивляется растяжению и имеет очень низкую пластичность и вязкость. Чем крупнее и прямолинейнее графитовые включения, тем хуже механические свойства чугуна. Твердость серого чугуна, а также его сопротивление сжатию близки к показателям стали, имеющей такую же структуру, как у металлической основы чугуна.

Графит оказывает и некоторое положительное влияние на свойства чугуна, в частности, он повышает его износостойкость, действуя аналогично смазке, повышает обрабатываемость резанием, так как делает стружку ломкой, способствует гашению вибраций изделий, уменьшает усадку при изготовлении отливок.

Механические свойства серого чугуна могут быть улучшены равномерным распределением мелкопластинчатого графита в отливке. Это достигается путем специальной обработки — модифицирования, когда в жидкий чугун перед его разливкой вводят добавки, которые образуют дополнительные центры графитизации, в результате чего получается мелкопластинчатый графит. Чугун с таким графитом называют модифицированным. От обычного серого чугуна он отличается более высоким сопротивлением разрыву, однако пластичность и вязкость его при модифицировании не улучшаются.

По ГОСТ 1412-85 буквы СЧ в обозначении марки чугуна означают — серый чугун. Двузначная цифра соответствует пределу прочности при растяжении σв МПа. Стандарт нормирует предел прочности серых чугунов σв = 274÷637 МПа, твердость — 143÷637 НВ и химический состав.

Основные свойства серого чугуна и его применение приведены в таблице 1.

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector