Основные способы сварки меди
Чтобы сварить медные конструкции, необходимо соблюдать требования технологий сварки меди. Доступны следующие способы сваривания медных заготовок:
- инвертором;
- полуавтоматом;
- аргоном;
- газом;
- угольными электродами.
Инвертором
Варить медь инвертором относительно просто, так как он обеспечивает стабильные параметры по току и напряжению, может иметь ряд предустановок. Также он компактный по размерам и имеет небольшой вес.
Шов формируют небольшими участками, длина которых составляет от 30 до 40 мм
Важно делать перерывы в работе, чтобы не допустить перегрева металла с проплавлением и деформацией. Углы наклона электрода над поверхностью должны составлять от 100 до 200
Полуавтоматом
Для создания длинных швов рекомендуется выполнять сварку меди полуавтоматом. За счёт равномерной подачи проволоки формируется надёжное однородное соединение. Для исключения образования пор нельзя допускать поперечных колебаний проволоки или заготовок.
Полуавтоматическая сварка деталей толщиной более 6 мм производится только после снятия кромки с выполнением притупления менее 4 мм. Обычно применяют проволоку диаметром 2 мм. Рекомендуемые параметры:
- напряжение 30 В;
- сила сварочного тока 300А;
- флюс марки К-13 или АН26;
- тип проволоки М1-3.
Полуавтомат для сварки
Аргоном
При сварке в аргоновой защитной среде используется проволока из вольфрама, подключение питания по схеме обратной полярности. Стыковка тонких конструкций производится без предварительного подогрева.
Шов формируют справа-налево, при этом электрод держат под прямым углом к поверхности заготовки, а прутка — 150. Средний расход газа составляет от 7 до 18 л/мин. Ток сварки подбирается самостоятельно в диапазоне 80-500А.
Сварка аргоном режим TIG
Режим TIG применяется при автоматической или полуавтоматической сварке. Преимущества:
- небольшая зона прогрева;
- исключение образования дефектов в структуре;
- высокая скорость создания сварного шва;
- простота технологии.
Газовая сварка
Газовая сварка выполняется горелкой. Технология достаточно сложная для формирования высококачественных точных швов, поэтому она в основном используется для соединения массивных деталей. Сложностью процесса является подбор оптимального расхода газа:
- для заготовок с толщиной до 1 см расход составляет до 150 л/мин.;
- при толщине более 1 см расход должен быть увеличен до 200 л/мин.
Для обеспечения равномерного прогрева массивных деталей допускается одновременное применение двух горелок. Чтобы повысить качество шва, нужно применять содержащие бор флюсы.
Угольным электродом
Процесс сваривания угольными электродами универсален, так как допускается поджиг дуги между двумя электродами, заготовкой и электродом, электродом и массой. Технология схожа с процессом сваривания горелкой.
Используется проволока марки БрКМц3-1. Параметры по току и напряжению подбираются в зависимости от технических особенностей конструкций и их состава.
Угольные электроды для сварки
Инвертором угольным электродом
Сваривание меди угольными электродами требуют наличия навыков проведения подобных работ. Особенности процесса следующие:
- наклон электрода над поверхностью заготовки не более 300;
- диапазон сварочных токов от 35 до 130 А.
Латуни
Сплавы меди с цинком – это латуни, или медноцинковые латуни. Для улучшения свойств в сплав добавляют Al, Mn, Ni, Fe, Sn, Si и др. Такие латуни называются специальными.
Латуни обозначают буквой “Л”, справа от которой пишут буквенное обозначение специально вводимых элементов (кроме Zn). затем цифру, указывающую процент меди, и наконец, проценты специально вводимых добавок в той же последовательности, в какой записаны сами элементы. В маркировке элементы обозначаются русскими буквами: Л – алюминий, Б -бериллий, О – олово, С – свинец, Н – никель, Мц – марганец, К – кремний, Мг – магний, X – хром, Ц – цинк.
ЛТ 96 – (томпак) означает медно-цинковую латунь с содержанием 96% меди и 4% цинка.
Л 68 – медноцинковая латунь с содержанием 68% меди и 32% цинка.
ЛАЖМц 70-6-3-1 – это специальная латунь с содержанием 70% меди, 6% алюминия, 3% железа, 1% марганца, 20% цинка.
Немного теории
Медь и её сплав (бронза и никель) ввиду электро- и теплопроводности, антикоррозийности используется во многих отраслях. Точка плавления материала 1083°C. Теплопроводность чистой меди в 2 раза больше по сравнению с алюминием, поэтому, при сварке аргоном необходим хороший разогрев металла.
Медь и сплавы подразделяются на несколько марок. Для получения качественного сварного соединения, лучше применять раскисленную или бескислородную медь, в них мало кислорода.
Основные присадочные составы для сварки меди аргоном представленны в таблице.
Но на практике, обычно используются аналогичные металлы по составу (что найдется в домашней мастерской).
Также, для лучшего расплава и сплавления металла, применяются прутки с тонким покрытием слоя флюса.
Подготовка материала (очистка)
Сварка меди аргоном не может выполняться без тщательной очистки материала. Берется любой абразивный инструмент и сварное место зачищается до блеска. Далее с помощью любого растворителя обезжиривается материал.
Подготовка материала — это важная процедура
Подойдите ответственно к очистке медных изделий — это влияет на качество соединения.
Чтобы не было деффектов (несплавление, шлаковые включения), выполняйте предварительный нагрев материала до температуры 350-600°C. Разность температуры зависит от основного металла, присадочного и разделки кромок. Определяется опытным путем.
Видео: как подготовить трещину у газового медного радиатора для сварных работ.
Сварка аргоном (режим TIG)
Эта технология по заверениям сварщиков самая лучшая, швы получаются аккуратными и прочными. Сварка меди аргоном выполняется вольфрамовым электродом на постоянном токе. А вот, при сплаве алюминиевой бронзы, соединение лучше производить на переменном токе.
Настройки тока аппарата подбираются в зависимости от толщины изделия и диаметра электрода. Таблица в помощь:
Кроме аргона, можно использовать азот, гелий и их смеси в составе защитных газов. Все перечисленные газы имеют свои плюсы и минусы. Но аргон, все же более востребован для сварочных работ.
Присадочные прутки подбираются по составу материала. Но обычно, в домашней мастерской, применяются медные провода добытые из электрических кабелей или трансформатора. Предварительно, медная жилка очищается от лака наждачкой и обезжиривается растворителем.
Хорошо, если добытая присадочная проволока будет с меньшей температурой плавления, чем приготовленное к сварке изделие.
Некоторые советы бывалых сварщиков:
- присадку всегда ведите перед горелкой;
- сварка аргоном для толстой меди может выполняться без присадочной проволоки;
- горелку рекомендуется вести зигзагами для обеспечения лучшего сцепления металла;
- тонкий материал, чтобы не было прожогов, необходимо варить короткими швами с перерывами;
- если аппарат без функции «заварка кратера», то горелку нужно отводить постепенно (удлиняя дугу);
- сварка аргоном производится в вертикальном и горизонтальном положении шва.
Видео: нагрев и соединение меди.
Сварка медных труб
При соединении медных труб аргоном, ток выставляется небольшой. Сварка ведется медленно, отдельными кусочками шва, с перекрытием не менее 1/3. Присадочная проволока расталкивается боковыми движениями горелки. Принцип простой:
- капнуть — растянуть;
- ещё раз добавить и растянуть.
Самый лучший вариант, иметь аппарат с функцией импульсной сварки. Ток можно выставить побольше, чтобы присадочный материал расплавлялся быстро. Время между импульсами настраивать так, чтобы медь после подачи импульса успевала остыть (защита от прожога). Также правильно настраивайте время функции — «заварка кратера».
P.S. Сварка медных труб или плоских изделий для каждого материала требует подбора тока методом тыка. Желательно пробы проводить на схожих по составу материалах. Не надо портить деталь, которую надумали сваривать.
Правильно выбранный ток, должен осуществлять хороший нагрев и проплавление медного изделия. Дыр и пор не должно быть. Удачи в освоение техники!
Медные материалы применяются в условиях с повышенными требованиями пластичности, стойкости к воздействию коррозии. Сварка меди производится при использовании различными сферами производства, декоративных деталей ввиду повышенных эстетических свойств. Теплопроводность материала в два раза выше алюминиевых сплавов, существует множество способов стыкования медных изделий. Современные технологии позволяют избежать при работе горячих трещин, пористых образований и других несоответствий стандартам.
Необходимое оборудование для аргонной сварки меди
Горелки являются важнейшими компонентами для осуществления аргоновой сварки. РГА – самые ходовые модели. ГОСТ 5.917-71 описывает требования к данным аппаратам.
Особенно востребованными моделями, выпущенными в соответствии с ГОСТ, считаются РГА-150 и РГА-400. При сварочном токе до 200 Ампер применяется первая модель. Диаметр электрода для нее составляет 0,8-3 мм. Второй вид оборудования можно применять с током до 500 Ампер. Диаметр электродов 4-6 мм. В нем используется водяное охлаждение в отличие от первого варианта, где предусмотрено лишь воздушное.
Аргонная сварка меди своими руками
Для сваривания медных сплавов берутся:
- горелки, в которые ставиться вольфрамовый электрод;
- баллон для хранения аргона;
- редукторные клапаны, задача которых состоит в регулировании подачи аргона;
- экипировка, предназначенная для обеспечения безопасности: защитная маска и перчатки минимум
Чтобы справится с аргонной сваркой меди самостоятельно, следует предварительно посмотреть обучающее видео.
Склонность к порообразованию
Медь и ее сплавы проявляют повышенную склонность к образованию пор в металле шва и околошовной зоне. Причиной образования пор является водород, водяные пары или образующийся углекислый газ при взаимодействии окиси углерода с закисью меди.
Высокие градиенты температуры способствуют развитию термической диффузии водорода в зоне термического влияния, что приводит к сегрегации водорода вблизи линии сплавления и увеличивает вероятность возникновения дефектов: пор, трещин. Растворимость водорода в меди зависит от содержания в ней кислорода и легирующих компонентов.
При сварке латуней причиной пористости может стать испарение Zn, температура кипения которого ниже температуры плавления Cu и составляет 907 °С. Испарение Zn уменьшает введение Мn или Si.
При сварке бронз выгорание легирующих примесей также может стать причиной появления пористости.
Работы в домашних условиях
В домашних условиях иногда требуется сварка деталей небольших размеров, поэтому для большинства случаев в качестве электродов подойдут обычные медные жилы из проводов. Все этапы работ определяет технология сварки меди:
- Зачищают пруток от поверхностных слоёв лака, окисла, жира или других видов загрязнений. Рекомендуется применять проволоки с минимальным количеством примесей в составе.
- В процессе сварки используют присадки, выполняющие роль защитной среды от контакта металла с воздухом.
- Поджигают горелку, впереди шва ведут присадку, затем электрод, а за ними выполняется прогрев. Движения горелки должны быть по спирали в сторону формирования шва.
При сварке толстых деталей рекомендуется расплавлять основной металл конструкций, но основе которого и формировать соединение. В таком случае шов получается чистым и аккуратным. При этом присадки не используют.
Сваривание тонких деталей выполняется ступенчатым образом. Способ заключается в выполнении проварок через определённые интервалы, а затем заваривают пропущенные участки до того момента, пока не получится равномерный и качественный шов.
Настройка аппарата
Чтобы добиться качества соединительного шва, нужно тщательно подбирать параметры сварочных аппаратов. Необходимо варить чистую медь на постоянном токе вольфрамовыми электродами в защитной аргоновой среде. Сплавы рекомендуется сваривать на переменном токе.
Настройки по току подбираются в зависимости от следующих критериев:
- толщины металла;
- диаметра проволоки электрода;
- типа и диаметра присадочного прутка.
Кроме аргоновой среды допустимо использовать азотную, гелиевую, а также смеси защитных газов. Аргон эффективен и потому применяется чаще остальных газовых смесей.
Способы сварки меди
Негативные свойства меди, препятствующие сварке, обходят многими способами, применяя различные расходные материалы и оборудование. Не все можно применить в домашних условиях, но некоторые вполне доступны.
Сварка меди аргоном
Этим способом выполняют сварку меди полуавтоматом или ручным аргонодуговым методом. Работа проводится постоянным током прямой полярности. Его величина устанавливается из расчета, что на каждый миллиметр толщины нужно 100 А. Значение можно корректировать в процессе работы в зависимости от состава металла. При сварке меди аргоном расход газа не должен превышать 10 л/мин.
В качестве присадочной проволоки можно использовать медные провода или жилы кабеля, очищенные от изоляции и лака. Ее подают по краю сварочной ванны впереди электрода, чтобы при плавлении металл не прилипал к нему. Для заготовок толщиной меньше 0,5 см предварительный подогрев не нужен.
Чаще всего выполняют сварку меди угольными электродами, так как вольфрамовые приходится часто менять. Заготовки толщиной больше 1,5 см соединяют графитовыми электродами. Допустимый вылет электрода не больше 7 мм, длина дуги 3 мм. В отличие от других способов сваркой меди аргоном можно качественно соединять вертикальные стыки.
https://youtube.com/watch?v=CCtzyoyn120
Газовая сварка
Для этой технологии не требуется сложное оборудование как для аргонодуговой. Достаточно горелки и баллона с ацетиленом. Чтобы обеспечить нормальное протекание процесса, потребуется расход газа 150 л/час для заготовок толщиной до 10 мм, свыше ― 200 л/час. Для замедления остывания заготовки с обеих сторон обкладывают листовым асбестом. Диаметр присадочной проволоки выбирается равным 0,6 толщины металла, но не более 8 мм.
Выполняя газовую сварку меди, пламя направляется перпендикулярно к стыку. При этом нужно следить, чтобы проволока плавилась раньше основного металла. Чтобы снизить вероятность появления горячих трещин, работу проводят без остановок. Завершенный стык проковывают без нагрева, если детали тоньше 5 мм, или при температуре 250⁰C, когда толще. Затем проводят отжиг при 500⁰C и быстро охлаждают водой.
Ручная дуговая сварка
Этим способом соединяют заготовки толщиной больше 2 мм, используя плавящиеся электроды и постоянный ток обратной полярности. Процесс практически не отличается от сварки стали, только электрод ведут без поперечных колебаний, поддерживая короткую дугу. Шов формируется возвратно-поступательными движениями.
Для сварки меди в домашних условиях лучшими признаны электроды АНЦ-1, которыми можно соединять металл толщиной до 15 мм без подогрева. Аналогичными характеристиками обладают марки EC и EG польского производства. При ремонте трубы с горячим носителем следует учитывать, что тепло и электропроводность швов, сделанных этим способом, в 5 раз меньше, чем у меди.
Сила тока и диаметр электрода в зависимости от толщины деталей приведены в таблице:
Толщина меди, мм |
Диаметр электрода, мм |
Значение тока, А |
2 |
2 — 3 |
100 — 120 |
3 |
3 — 4 |
120 — 160 |
4 |
4 — 5 |
160 — 200 |
5 |
5 — 6 |
240 — 300 |
6 |
5 — 7 |
260 — 340 |
7 — 8 |
6 — 7 |
380 — 400 |
9 — 10 |
7 — 8 |
400 — 420 |
Автоматическая сварка под флюсом
Для работы потребуется сварочный автомат, выдающий переменный и постоянный ток. Флюс наносят на обе стороны стыкуемых заготовок. Сварку под керамическим флюсом проводят переменным током, для остальных устанавливается обратная полярность. Для соединения деталей тоньше 10 мм пользуются обычными флюсами. Более толстые заготовки варят под сухими гранулированными.
Сварку проводят одним проходом с использованием присадочной проволоки из меди. Если характеристики по тепло и электропроводности не важны, ее заменяют бронзовой для повышения прочности соединения. Чтобы швы создавались одновременно с обеих сторон, на подкладках под стыком выкладывают подушки из флюса.
При работе с медью и ее сплавами выделяются токсичные газы. Из латуни при сильном нагреве испаряется цинк, образуя ядовитую окись. Поэтому работать надо в респираторах и защитной одежде в помещениях с вытяжной вентиляцией.
Свариваемость меди
Медная сварка представляет собой сложную операцию. Для ее правильного выполнения человек обязан хорошо понимать свойства и химическую чистоту этого красноватого металла и его сплавов, которые получаются в результате соединения популярных элементов с ним. Поэтому всем заинтересованным лицам полезно будет знать особенности сварки меди и ее сплавов.
Прежде всего, на свариваемость красноватого металла влияет присутствие легирующих элементов, которые бывают токсичными и летучими. Поэтому во время выполнения работ требуется наличие исправной и эффективной вентиляции для защиты персонажи.
Примечание! На производстве сварные процессы выполняются в специально оборудованном месте. Оно оснащается комплектом оборудования, которое технологически связано между собой. Такое стационарное место также комплектуется всем нужным инструментом и приспособлениями. При выполнении работ в домашних условиях используется сварной пост для пайки меди. Он укомплектован баллонами с газовыми смесями, редукторами и горелкой.
Для улучшения различных свойств меди в ее состав чаще всего вводит следующие легирующие элементы:
- Цинк, уменьшающий свариваемость латунных сплавов. Снижение этой характеристики происходит пропорционально его количеству. Цинк закипает при низкой температуре. В результате сварки медно цинковых сплавов выделяются токсичные пары.
- Олово, положительно влияющие на возникновение горячих трещин во время сварочного процесса, если его процентное содержание В сплаве равно от 1% до 10%. Этот элемент менее токсичен и летуч, чем цинк. Однако он при сварке нередко окисляется, поэтому появляются оксиды. Они уменьшают прочностной характеристику шва.
- Кремний, благоприятно влияющие на свариваемость, так как способствуют раскислению.
- Алюминий, бериллий и никель – элементы, образующие оксиды. От них нужно избавляться перед сварочным процессом. Чтобы предотвратить образование этих оксидов во время работы, используется защитный газ или флюс и соответствующий ток для процесса.
- Кислород, вызывающий увеличение пор и уменьшающий прочность швов, если в медных сплавах отсутствует необходимый процент раскислители, самым популярным из которых является фосфор. К их числу также относится марганец, алюминий, кремний и железо. Если медные сплавы содержат эти элементы, тогда удается уменьшить количество кислорода, который может быть в виде закиси меди или иметь форму свободного газа.
- Свинец, сера и селен включают в сплавы с медью, чтобы повысить степень их обрабатываемости. Однако данные элементы не только повышают на свариваемость, но и увеличивает вероятность образования горячих трещин. Среди них самым вредным является свинец.
- Марганец и железо оказывают не существенное влияние на свариваемость медных сплавов, так как их процентное содержание незначительно. Обычно она составляет 1,4-3,5%.
На свариваемость как меди, так и ее сплавов влияют и другие факторы:
- Теплопроводность, которая возрастает с уменьшением числа легирующих элементов. Поэтому при создании соединения выбирается такой ток и защитный газ, чтобы в шов вводилось максимальное количество тепла. Нередко требуется выполнить предварительный нагрев свариваемых деталей, отличающихся небольшой теплопроводностью. Этот процесс осуществляется в зависимости от толщины изделий.
- Горячие трещины появляются во всех медных сплавах при затвердевании. Их количество можно сократить, если надежно зафиксировать соединяемые детали во время выполнения сварочных работ. Подогрев изделий также способствует снижению числа горячих трещин. Этот процесс позволяет замедлить охлаждение деталей и уменьшить сварочные напряжения.
- Положение сварки, так как медные металлы обладают неустойчивыми характеристиками. Обычно работы выполняются в нижнем положении. В горизонтальной плоскости они проводятся в исключительных случаях. Это создание угловых и тавровых швов. Во время их выполнения осуществляется разделка кромок.
- Пористость, возникающая при испарении элементов, отличающихся низкой температурой кипения. К ним относятся фосфор, кадмий и цинк. Уменьшить такой эффект позволяет быстрое выполнение работ и минимальное использование присадочных материалов.
Состояние поверхности меди и ее сплавов является еще одним фактором, влияющим на свариваемость. Перед работами с металла должны быть удалены все окислы и жиры. Обычно для этих целей применяется проволочная щетка. Зная перечисленные особенности сварки меди удается выполнить качественные соединения. Однако для достижения положительного результата еще требуется выбрать правильную технологию осуществления сварочных работ.
Особенности сварки меди
Особенности сваривания медных конструкций:
- нагретый металл реагирует с кислородом и образует тугоплавкую оксидную плёнку, поэтому необходимо использовать различные методы противодействия протеканию такой реакции;
- медь имеет высокий коэффициент теплового расширения, превышающий величину для стальных сплавов в 1,5 раза, поэтому после остывания наплавленный металл подвержен значительной усадке;
- при прямом контакте с кислородом расплавленная медь поглощает кислород и водород, что приводит к формированию неоднородной хрупкой фазы с порами и дефектами;
- по причине хорошей теплопроводимости медные конструкции быстро нагреваются и охлаждаются, что негативно сказывается на механических свойствах сварного шва;
- высокая текучесть усложняет процесс сваривания массивных деталей — невозможно обеспечить полную проплавку с одной стороны конструкции, а также создать вертикальный или потолочный шов;
- пластические и прочностные характеристики при повышении температуры нагрева выше +2000С снижаются и к +5500С полностью теряются.
Влияние примесей на свариваемость меди
Примеси в меди негативно сказываются на её свойствах, так как могут приводить к охрупчиванию, снижению пластичности, созданию внутренних дефектов. При сварке в материале могут находиться фазы с отличной от чистого металла температурой плавления, что повышает сложность сварных работ.
Примеси в чистом металле присутствуют практически всегда, поэтому фактически выполняется сваривание сплавов обязательно в защитной атмосфере или с применением флюсов
Важно применять присадки на основе алюминия, марганца, кремния. Они позволят получить однородную структуру и добиться необходимых технических характеристик сварного шва
Как подготовиться?
Надо сказать, что медь редко где применяется в чистом виде, что не может не сказаться на сварочном процессе. Примеси в сплаве обеспечивают и высокую текучесть, и большую чувствительность к кислороду, и интенсивное испарение цинка. А еще усложняет процесс высокое термическое расширение в совокупности с высокой же теплопроводностью. Все это усложняет сварку меди в принципе. Потому подготовка к сварке – важнейший этап удачной работы.
Начинается процесс подготовки с качественных зачистных работ. Место соединения следует обработать абразивом, пока не появится характерный блеск. Потом область работы нужно обязательно обезжирить. Чем лучше будет выполнена зачистка, тем качественнее пройдет последующая сварка.
Замечания для сварщика.
- Дефекты сварки превратятся в шлак, потому еще на этапе подготовки нужно их предупреждать.
- При плавлении медь быстро стекает, то есть могут возникнуть проблемы с потолочными и вертикальными швами, так как даже при малом перегреве металл незамедлительно стечет вниз. Устранить это можно обеспечением сварочной ванны малого размера.
- От других металлов медь отличает высокий коэффициент линейного расширения. Медь легко деформируется, на ней быстро образуются горячие трещины. Потому деталь предварительно прогревают в печи либо горелкой.
Опытные мастера напоминают, как надо выполнять травление самой детали и присадочной проволоки.
Травление осуществляется в особом растворе, его сделать можно самому. Основным компонентом такого раствора будет серная, азотная либо же соляная кислота. Ее смешивают с водой и туда отправляются заготовки с проволокой. После завершения травления все хорошо промывается в воде, просушивается горячим воздухом.
Список типов материалов для сварки, фото
Ассортимент сварочных проволок бренда «ДЕКА» имеет в своем составе материалы, позволяющие их использовать в различных сварочных технологиях. Основное применение сварочной проволоки – при работе на полуавтоматах. Подавляющее большинство свариваемых проволокой материалов – малоуглеродистые, низколегированные стали. Однако также сваривают коррозионностойкие, высоколегированные, алюминиевые и другие сплавы. Это возможно при наличии сварочной проволоки, имеющей состав близкий к свариваемым материалам.
Самозащитная проволока DEKA E71TGS 1,0 мм. Фото DEKA
Торговая марка «Дека» предлагает следующие виды сварочной проволоки:
- омедненная сварочная проволока (! не путать с медной);
- стальная омедненная сварочная проволока под сварку под флюсом;
- нержавеющая сварочная проволока;
- газозащитная сварочная проволока;
- самозащитная сварочная проволока;
- алюминиевая сварочная проволока.
Справка. Титановые проволоки, среди перечня которых популярна ВТ1-ооСв, а также материалы для работы с чугунными изделиями и ПАНЧ-11 выпускаются другими производителями.
Для полуавтомата
В сварочной технологии для получения качественных сварных швов при обеспечении производительности работы, широко используются полуавтоматы. В обеспечении их работы непосредственное участие принимает сварочная проволока. Разнообразие присадочных материалов значительно увеличивает номенклатуру свариваемых материалов.
Сварочная омедненная проволока ДЕКА ER70S-6 0,8 мм. евро-кассета, 5 кг. Фото Сварочные Технологии
Порошковая
Для защиты сварочного шва от внешних воздействий выполняется сварка в искусственно созданной среде. Газ (углекислый, аргон) подается через горелку в зону сварки. Дополнительно для лучшей защиты может быть организована его подача через специальные поддувы. Образованная газовая среда инертна и не дает раскаленному металлу сварочного шва вступать в реакцию с элементами воздуха.
Порошковая (самозащитная) сварочная проволока DEKA. Фото DEKA
Порошковая проволока используется без применения защитного газа. Ее конструкция представляет трубку наполненную металлическим порошком и флюсом. Предохраняющий газовый слой образуется при сгорании флюса. Обычно таким методом сваривают места, где невозможно применить защитный газ.
Видео
В ролике ниже показана разница сварки порошковой и сплошной проволокой, как раз на примере Дека.
Омедненная, флюсовая, для стали 345
Неоспоримыми преимуществами обладает сварочная проволока покрытая медью. Благодаря своей высокой проводимости, медь обеспечивает низкое контактное сопротивление. Поэтому обеспечивается стабильное горение дуги, металл практически не разбрызгивается. Хорошее скольжение не изнашивает подводящий наконечник. В омедненной сварочной проволоке минимальное количество вредных примесей. Коррозийная стойкость по сравнению с обычной проволокой на порядок выше.
Омедненная сварочная проволока для сварки под флюсом DEKA EM 12 (Св08ГА) 4,0 мм. (25 кг). Фото DEKA
Флюсовая сварочная проволока используется при сварке полуавтоматом без газа. Это является основным преимуществом такой сварочной проволоки. В остальном преимущества омедненной проволоки не вызывают сомнений.
Сталь С345 – это строительная сталь с определенными механическими свойствами. Так как она легируется фосфором, то сваривается с большими проблемами – могут при резком нагреве-охлаждении образовываться трещины. Такую сталь сваривать нужно в подогретом состоянии и в качестве присадочного материала подобрать единственно подходящий.
Для сварки нержавейки
Для сварки нержавеющих материалов важно, чтобы присадочный материал соответствовал свойствам свариваемых материалов. Варить ею на полуавтомате без газа нельзя (кроме порошковой проволоки)
Требуется особо тщательно подбирать режимы работы.
Нержавеющая проволока DEKA ER308LSi 1,6 мм по 15 кг. Фото DEKA
Техника сварки
В предыдущей статье “Сварка меди и её сплавов” я давала описание того какие существуют трудности при сварке меди, основные методы их преодолений, как сваривается медь и её сплавы по маркам и как подготовить детали к сварке
Сейчас бы хотелось уделить внимание именно режимам сварки, сварочным токам и выбору электродов
Можно посмотреть видео также по этому вопросу
Сварка меди
В таблице приведены примерные режимы сварки меди для горизонтального положения.
Вид соединения | Размеры, мм | Процесс сварки | Газ | Сварочный ток, А | Напряжение на дуге, В | Скорость сварки, м/ч | Диаметр электрода, мм | Вылет электрода, мм | Расход газа, л/мин | ||
S | b | ||||||||||
|
0+0,5 | ИДС | Ar | 80-110 | 18-20 | 30-45 | 0,8-1,2 | 10-14 | 07.сен | ||
КЗ | N2 | 80-110 | 18-20 | 0,8 | 10-12 | ||||||
0,8-1 | |||||||||||
|
1-1,5 | ИДС | Ar | 140-210 | 19-23 | 25-35 | 0,8-1,6 | 10-18 | 08.окт | ||
КЗ | N2 | 140-200 | 20-25 | 25-35 | 0,8-1,2 | 1о-14 | 08.сен | ||||
КЗ | Ar | 140-200 | 19-23 | 25-30 | 0,8-1,2 | 10-14 | 08.окт | ||||
02.мар | |||||||||||
|
02.мар | КЗ | N2 | 250-320 | 24-27 | 22-28 | 1-1,4 | 10-.16 | 10.дек | ||
СТР | Ar | 250-320 | 23-26 | 20-25 | 1-1,6 | 10-18 | |||||
ИДС | Ar | 250-320 | 23-28 | 20-25 | 1,2-3 | 12-30 | |||||
05.июн | |||||||||||
08.окт | 3-3,5 | СТР | Ar | 350-550 | 32-37 | 18-20 | 2-3 | 20-35 | 14-16 | ||
СТР | He | 300-500 | 33-38 | 20-22 | 1,6-3 | 18-35 | 30-40 | ||||
КР | N2 | 300-500 | 34-39 | 20-28 | 1,6-3 | 18-35 | 14-16 | ||||
|
1,5-2,5 | СТР | Ar | 300-500 | 28-36 | 16-18 | 2-4 | 20-40 | 14-18 | ||
СТР | He | 270-500 | 32-38 | 18-22 | 1,5-3 | 18-35 | 30-40 | ||||
КР | N2 | 280-500 | 32-39 | 18-22 | 1,5-3 | 18-35 | 14-16 | ||||
дек.14 | |||||||||||
16-20 | 03.апр | СТР | Ar | 350-680 | 32-39 | 16-18 | 2-4 | 20-40 | 14-18 | ||
СТР | He | 350-650 | 34-42 | 16-20 | 2-4 | 30-50 | |||||
КР | N2 | 350-650 | 35-42 | 16-20 | 2-4 | 14-18 |
Как указывалось в предыдущей статье, количество проходов при сварке должно быть минимальным. Технологичней правильно вести шов справа налево углом вперед. Не забываем о графитовых подкладках под шов или медных с водным охлаждением. Если необходимо варить двухсторонний шов, производим его формирование без подкладок, то есть в висячем положении. Можно и применить подварку ручной сваркой с прикрытием аргоном вольфрамовым электродом. Ниже представлены фотографии работ, опубликованные с разрешения мастера.
Примеры сварочных работ с медью от сварщика
Сварка бронзы
По бронзам. Обозначаются буквами Бр, далее буквы обозначают наименование легирующих добавок и цифры по порядку – количество этих добавок в процентном соотношении.
Ниже представлена таблица примерных параметров сварки бронз марки Бр.АМц9-2, Бр.АЖМц 9-5-2 и латуни ЛМНЖ 55-3-1. Для сварки постоянным током обратной полярности, проволокой Бр. АМц 9-2 в горизонтальном положении.
Вид соединения | Размер, мм | Процесс сварки | Сварочный ток, А | Напряжение на дуге, В | Скорость сварки м/ч | Диаметр электрода, мм | Вылет электрода, мм | Расход газа, л/мин | ||
S | b | |||||||||
|
3 | 0+1 | ИДС | 150-190 | 23-26 | 20-25 | 1-1,5 | 10-16 | 08-10 | |
КЗ | 160-190 | 22-25 | 20-25 | 1-1,5 | 10-16 | 9-12 | ||||
3 | ||||||||||
|
4-5 | 0+1,5 | ИДС | 140-220 | 23-26 | 20-22 | 1-1,5 | 10-16 | 10-12 | |
4-5 | КЗ | 160-220 | 22-26 | 20-22 | 1-1,5 | 10-16 | 10-12 | |||
04.май | ||||||||||
|
8-10 | 0+1,5 | СТР | 300-400 | 29-33 | 25-32 | 2-4 | 20-35 | 12-16 | |
10 | 0+2 | СТР | 375-450 | 31-36 | 30-35 | 2-4 | 20-35 | 14-16 | ||
08.окт | ||||||||||
|
14-16 | 0+2 | СТР | 400-650 | 33-38 | 20-25 | 2-5 | 20-40 | 16-20 | |
14-16 | ||||||||||
|
0+2
24-26 |
СТР | 400-800 | 33-42 | 18-30 | 2-5 | 20-40 | 16-20 | ||
Бронзы при сварке очень жидкотекучие и это нужно учитывать. Также затрудняет процесс соединения алюминия с кислородом и образования тугоплавкого соединения окиси алюминия. Поэтому технология сварки такая же, как и сварка алюминия, а режимы сварки выбираем как для сварки меди.
Сварка латуни
Рассматривая как ведут себя латуни при сварке, помним, что это сплав меди с цинком. Что бы латунь приобрела специальные свойства, в неё добавляют такие элементы, как Al, Mn, Ni, Fe, Sn, Si и другие металлы. Обозначаются они так же как и бронзы. Например: ЛТ96 , то есть томпак – это 96% меди + 4% цинка, ЛАЖМЦ 10-6-3-1 – 70% меди, 6% алюминия, 3% железа, 1% марганца и 20% цинка. Она относится к специальным латуням. Основные сложности при сварке – выгорание цинка, причем очень интенсивное, которое ухудшает свойство шва и околошовной зоны. Поэтому при сварке применяем короткую дугу с пониженной силой тока. Хороший результат дает применение проволоки с добавкой кремния. Кремний, соединяясь с кислородом воздуха, создает окись кремния SiO². Он покрывает сварочную ванну как бы плёнкой и тем самым удерживает цинк внутри металла.