Свариваемость сталей

Внешние враги

А ещё существуют химические вещества, не входящие в состав стали, но, тем не менее, оказывающие непосредственное влияние на её свариваемость.

  • Кислород (O), №8. Его присутствие должно быть сведено к минимуму, а от воздействия кислорода приходится защищать зону сварки даже в том случае, когда он поступает туда вместе с атмосферным воздухом. Ведь это вещество – активный окислитель, ответственный за образование хрупких структур в расплавленном железе. Чтобы этого не случилось, к месту сварки подают углекислый газ, образующийся в процессе сгорания покрывающего электрод вещества или находящийся под давлением в специальных баллонах. При работе с нержавеющими сталями и цветными металлами этого оказывается недостаточно. В этом случае в качестве защиты приходится использовать благородные газы, такие как гелий или аргон.
  • Водород (H), №1. Не входя в состав стали, он попадает к месту сварки из окружающего воздуха, оказывая разрушительное воздействие на структуру шва. Он вызывает пористость металла, снижает его прочность, становится причиной образования мелких трещин. Защищаются от него так же, как и от кислорода.

Зная марку стали заранее, удаётся сразу определиться с выбором процесса сварки. Но если по каким-то причинам эта информация отсутствует или существует сомнение в её достоверности остаётся только один путь – проведение натурных экспериментов, в ходе которых может быть подобрана оптимальная технология. Но если нет желания заниматься экспериментами, стоит заранее позаботиться о наличие справочной информации и документальных подтверждениях состава материала.

Влияние, оказываемое различными веществами на свариваемость стали

Действующими стандартами нормируется содержание следующих химических элементов:

  • Углерода (C). Расположенное в периодической таблице химических элементов под номером 6, это вещество оказывает значимое влияние на такие характеристики стали, как вязкость, прочность и закаливаемость. Со сваркой не будет проблем, если содержание углерода не превышает 0,25%. В противном случае в зоне сварного соединения резко усиливаются термические влияния, приводящие к образованию различных дефектов, вроде горячих и холодных трещин, каверн и т. п.
  • Серы (S). Шестнадцатый элемент периодической таблицы считается однозначно вредным. Она охотно образует с железом легкоплавкие соединения, располагающиеся по границам зёрен основного металла. Это приводит к ослаблению связи между ними. В горячем состоянии в материале образуются трещины. Подобное явление принято называть красноломкостью металла. Избежать его удаётся, если содержание серы ниже 0,045%.
  • Фосфор (P). Расположенный в таблице под номером 15, этот элемент, как и его соседка, сера, вреден для стали. Он ответственен за образование внутри материала хрупких структур. Это качество принято называть хладноломкостью, поскольку особенно сильно оно даёт знать о себе при низких температурах.
  • Марганец (Mn), №25. В определённых пределах повышает упругость и прочность стали. Находясь в пределах 0,3 – 0,8% от общего количественного состава, не оказывает влияния на процесс сварки. Но если его содержание превысит 1,8%, то материал начнёт закаливаться, и избежать образования трещин и излишней хрупкости шва не удастся.
  • Кремний (Si), №14. Так же, как и марганец, несколько увеличивает характеристики упругости и прочности. Если его общее количество остаётся в пределах 0,2 – 0,3%, проблем не возникает. Но результатом значительного, свыше 0,8%, станет образование его тугоплавких сплавов, повысится жидкотекучесть стали. Это приведёт к проблемам при наложении сварных швов.
  • Хром (Cr), №24. Он придаёт стали не только высокую коррозионную стойкость, но также делает её прочной, упругой и твёрдой. Тем не менее, его содержание свыше 0,3% создаёт проблемы, поскольку в этом случае активно способствует образованию тугоплавких окислов и трещин, образующихся в результате резкого увеличения твёрдости материала в зоне термического нагрева. Из-за образования карбидов хрома в околошовной зоне коррозионная стойкость металла резко снижается.
  • Молибден (Mo) №42. Делает кристаллы стали (зёрна) мельче, существенно повышая её прочность, стойкость к высоким температурам и ударным нагрузкам. Но в процессе сварки молибден активно выгорает и окисляется, способствуя появлению трещин. Особенно заметно это становится, когда его содержание превышает 1%.
  • Ванадий (V), №23. Даже в малых количествах повышает закаливаемость стали, но тем самым создаёт проблемы при наложении сварных швов. При нагреве этот металл окисляется и выгорает. Это означает, что его присутствие в количестве более 1% для ответственных свариваемых деталей недопустимо.
  • Вольфрам (W), №74. Отвечает за такие качества, как износостойкость, особенно при высоких температурах – такое свойство принято называть красностойкостью – и твёрдость. Но поскольку при наложении шва сильно окисляется, в свариваемых сталях его присутствие вовсе не допустимо.
  • Никель (Ni), №28. Это друг сварщика. Он измельчает кристаллы металла, в результате чего шов становится более прочным и пластичным. Даже при его добавлении порядка 2 – 3% от общего состава даёт ощутимый результат. Для деталей, работающих под высокими нагрузками, рекомендовано использовать материалы, в которые добавлен никель в количестве 8 – 10 %. Но при сварке таких сталей приходится использовать различные технологические ухищрения, ограничивая поступление в зону нагрева кислорода. К тому же никель дорог, а это значит, что его использование должно быть экономически оправданным.
  • Титан (Ti), №22. Он улучшает те же, что и никель, характеристики, и столь же требователен к технологическим особенностям процесса. Однако, несмотря на значительную стоимость, в особо ответственные детали добавляют и тот и другой металл, стараясь довести содержание титана до 4 – 5%.

Группы свариваемости

Учитывая все, выше перечисленные критерии, свариваемость можно подразделить на группы с различными свойствами.

Классификация металлов по свариваемости:

Хорошая – коэффициент Сэкв составляет не менее 0,25 %– для изделий из низкоуглеродистых сталей, независимо от условий погоды, толщины изделия, предварительной подготовки.

  • Удовлетворительная – коэффициент Сэкв находится в пределах 0,25-0,35 %. Ограничения: по диаметру свариваемого изделия, условиям природной среды. Толщина материала допускается не более 2 см, температура воздуха должна быть не ниже минус 5 градусов, безветренную погоду.
  • Ограниченная – коэффициент Сэкв в пределах 0,350-0,45%. Для формирования высококачественного сварного соединения требуется предварительный подогрев материала. Эта процедура нужна для «плавного» аустенитного преобразования, создания устойчивых структур (бейнитные, ферритно-перлитные).
  • Плохая – коэффициент Сэкв порядка 45-ти % (стали 45). В данном случае невозможно обеспечить стабильность сварочного соединения без предварительного подогрева металлических кромок, термической обработки готовой конструкции. Для создания требуемой микроструктуры нужно дополнительно осуществлять подогревы, охлаждения.

Зависимо от категории, технологических параметров, свойства сварных соединений могут корректироваться последовательными температурными воздействиями. Термообработка может осуществляться несколькими способами: отпуск, закаливание, нормализация, отжиг. Наиболее востребованы закалка, отпуск. Подобные процедуры повышают твердость, соответственно прочность сварного соединения, предотвращают формирование трещин на материале, снимают напряжение. Показатель отпуска будет зависеть от желаемых характеристик материала.

Теплоустойчивые и высокопрочные стали

Сварочные работы с теплоустойчивыми железоуглеродистыми сплавами 12МХ, 12Х1М1Ф, 25Х2М1Ф, 15Х5ВФ необходимо проводить с предварительным подогревом до температур 300-450˚С, с завершающей закалкой и высоким отпуском.

  • Электродуговая сварка каскадным способом оформления многослойного шва, с использованием прокаленных покрытых электродов УОНИИ 13/45МХ, ТМЛ-3, ЦЛ-30-63, ЦЛ-39.
  • Газовая сварка с подачей ацетилена 100 дм3/мм с использованием присадочных материалов Св-08ХМФА, Св-18ХМА. Соединение труб выполняется с предыдущим газовым подогревом всего стыка.

При сварке среднелегированных высокопрочных материалов 14Х2ГМ, 14Х2ГМРБ важно руководствоваться теми же правилами, что и для теплоустойчивых сталей, с учетом некоторых нюансов:

  • Тщательная зачистка кромок и использование прихваток.
  • Высокотемпературное прокаливание электрода (до 450˚С).
  • Предварительный подогрев до 150˚С для деталей толщиной больше 2 см.
  • Медленное охлаждение шва.

Основные критерии, устанавливающие свариваемость

Оценивая свариваемость сталей, всегда уделяют внимание химическому составу металла. Некоторые химические элементы могут повысить этот показатель или снизить его

Углерод считается самым важным элементов, который определяет прочность и пластичность, степень закаливаемости и плавкость. Проведенные исследования указывают на то, что при концентрации этого элемента до 0,25% степень обрабатываемости не снижается. Увеличение количества углерода в составе приводит к образованию закалочных структур и появлению трещин.

Понятие свариваемости

К другим особенностям, которые касаются рассматриваемого вопроса, можно отнести нижеприведенные моменты:

Практически во всех металлах содержатся вредные примеси, которые могут снижать или повышать обрабатываемость сваркой.
Фосфор считается вредным веществом, при повышении концентрации появляется хладноломкость.
Сера становится причиной появления горячих трещин и появлению красноломкости.
Кремний присутствует практически во всех сталях, при концентрации 0,3% степень обрабатываемости не снижается. Однако, если увеличить его до 1% могут появится тугоплавкие оксиды, которые и снижают рассматриваемый показатель.
Процесс сварки не затрудняется в случае, если количество марганца не более 1%. Уже при 1,5% есть вероятность появления закалочной структуры и серьезных деформационных трещин в структуре.
Основным легирующим элементом считается хром. Он добавляется в состав для повышения коррозионной стойкости. При концентрации около 3,5% показатель свариваемости остается практически неизменным, но в легированных составах составляет 12%. При нагреве хром приводит к появлению карбида, который существенно снижает коррозионную стойкость и затрудняет процесс соединения материалов.
Никель также является основным легирующим элементом, концентрация которого достигает 35%. Это вещество способно повысить пластичность и прочность. Никель становится причиной улучшения основных свойств материала.
Молибден включается в состав в небольшом количестве. Он способствует повышению прочности за счет уменьшения зернистости структуры. Однако, на момент воздействия высокой температуры вещество начинает выгорать, за счет чего появляются трещины и другие дефекты.
В состав часто в качестве легирующего элемента добавляется медь. Ее концентрация составляет около 1%, за счет чего немного повышается коррозионная стойкость

Важной особенностью назовем то, что медь не ухудшает обработку сваркой.

Критерии свариваемости

В зависимости от особенностей структуры и химического состава материала все сплавы делятся на несколько групп. Только при учете подобной классификации можно выбрать наиболее подходящий сплав.

Расшифровка марок нержавеющей стали

Для того чтобы правильно подобрать марку коррозионностойкой стали для реализации тех или иных целей, удобнее всего воспользоваться специальными справочниками. В них приведена информация обо всех возможных вариантах обозначения таких сплавов в различных странах мира. Среди огромного разнообразия марок, можно выделить те, которые получили наибольшее распространение среди специалистов во многих странах мира. К ним можно отнести следующие марки нержавеющих сталей с аустенитной структурой.

  • 10Х13Н17М3Т, 10Х13Н17М2Т: отличает эти марки, кроме исключительной коррозионной и термической устойчивости, хорошая способность образовывать сварные соединения. Благодаря таким качествам, изделия из сплавов данных марок могут успешно эксплуатироваться в условиях повышенных температур и контактировать даже с очень агрессивными средами. Составными элементами таких сплавов, которые и определяют их уникальные характеристики, являются: хром (16-18%), молибден (2-3%), никель (12-14%), углерод (0,1%), кремний (0,8%), медь (0,3%), титан (0,7%), марганец (2%), сера (0,02%), фосфор (0,035%). В других странах эти марки обозначаются иначе, в частности: в Китае — OCr18Ni12Mo2Ti, в Японии — SUS316Ti, в США — 316Ti, во Франции — Z6CNDT17-12.
  • 08Х18Н10, 08Х18Н9: данные марки стали используются для производства труб различных сечений, элементов печного оборудования, на предприятиях химической промышленности. В состав таких сталей входят: хром (17-19%), титан (0,5%), никель (8-10%), углерод (0,8%).

Воздуховоды из нержавеющей стали

  • 10Х23Н18: нержавеющие стали данной марки относятся к категории жаропрочных. При их использовании следует иметь в виду, что при выполнении их отпуска они могут становиться хрупкими. В состав сталей данной марки входят: хром (22-25%), никель (17-20%), марганец (2%), кремний (1%).
  • 08Х18Н10Т: изделия из нержавейки данной марки хорошо свариваются даже без предварительного подогрева и не утрачивают своей коррозионностойкости даже при высоких температурах. Недостаточно высокая прочность, которой отличаются стали данной марки, легко улучшается путем их термической обработки, которую рекомендует выполнять и ГОСТ 5632-72.
  • 06ХН28МДТ: уникальная марка стали, сварные конструкции из которой способны успешно эксплуатироваться даже в очень агрессивных средах. Состав данной марки коррозионностойкой стали включает в себя: хром (22-25%), никель (26-29%), медь (2,5-3,5%).
  • 12Х18Н10Т: изделия из данной марки стали, отличающейся высокой термической устойчивостью и исключительной ударной вязкостью, преимущественно используются на предприятиях по переработке нефти, в химической, целлюлозно-бумажной промышленности, а также в строительстве.

Таблица соответствий основных марок нержавеющих сталей и химический состав

К маркам нержавеющей стали с мартенситной структурой относятся: 40Х13, 20Х13, 12Х13, 30Х13. Изделия из данных марок нержавейки нельзя соединять методом сваривания, из них, в основном, изготавливают режущий и измерительный инструмент, рессорные элементы. Большими преимуществами таких изделий является практически полное отсутствие в них внутренних дефектов (флокенов), к тому же, они не становятся более хрупкими после выполнения отпуска.

К коррозионностойким сталям с ферритной структурой относятся: 08Х17, 08Х18Т1, 08Х13. Из стали данных марок не рекомендуется изготавливать детали, которые будут испытывать значительные ударные нагрузки и эксплуатироваться при пониженных температурах.

Для того чтобы разобраться в качественном и количественном составе нержавеющей стали, достаточно расшифровать ее марку. Алгоритм такой расшифровки достаточно прост:

  • по первому числу, стоящему в марке стали, определяют количественное содержание в ней основного после железа элемента — углерода (исчисляется в сотых долях процента);
  • содержание в составе стали других элементов (исчисляются в целых процентах), определяют по цифрам, стоящим за литерами, которыми такие элементы и обозначают (Х — хром, Н — никель, М — молибден и т.д.).

Широкий ассортимент марок нержавеющей стали позволяет найти оптимальный для себя вариант. Следует учитывать, что отдельные виды нержавейки могу взаимозаменяться в определенных пределах. Если при выборе стали возникли трудности, нужно обращаться к техническим консультантам специализированных фирм.

Возможные трудности при сваривании

В ходе работ исполнитель может столкнуться с такими проблемами:

  1. Отклонением дуги (магнитным дутьем). Поле может создавать заготовка или расположенные поблизости кабели. Для предотвращения данного явления детали предварительно размагничивают, зону работ ограждают экранами. На прямой полярности следует варить в направлении к зажиму массы, на обратной — от него.
  2. Появлением таких дефектов, как непровар или сквозной прожог заготовки. Объясняется установкой неверного значения силы тока. В инструкции к расходникам рекомендуемый ампераж указывают в виде диапазона, например 80-140 А. Точное значение подбирают опытным путем. Непровар возникает при заниженном показателе, прожог — при завышенном.
  3. Вытеканием расплава из сварочной ванны при выполнении вертикальных и потолочных швов. Во избежание данного явления необходимо снизить сварочный ток и использовать специальные расходники, дающие вязкие шлаки.
  4. Появлением дефектов в виде кристаллизационных горячих трещин и хрупких закалочных включений. Объясняется увеличенной концентрацией карбона.


Процесс сваривания зависит, главным образом, от содержания в стали углерода.

На количество углерода в шве влияет:

  1. Конструкция узла.
  2. Форма стыка.
  3. Предварительный нагрев заготовок.
  4. Состав металла.

Отсюда следует, что предотвратить появление растрескивания помогут такие меры:

  1. Снижение растягивающих напряжений в шве.
  2. Формирование стыка правильной формы с однородным химическим составом.
  3. Уменьшение концентрации вредных элементов.

Особенности сварочных работ со сталями среднего и высокого содержания углерода:

  1. Изначальный подогрев кромок до 100-200˚С на ширину до 150 мм. Только марки ВСт4 и сталь 25 свариваются без дополнительного нагрева. Для среднеуглеродистых, обладающих удовлетворительной свариваемостью, перед началом выполнения работ производится полноценная нормализация. Для высокоуглеродистых необходим подготовительный отжиг.
  2. Дуговая сварка осуществляется покрытыми прокаленными электродами, размером от 3 до 6 мм (ОЗС-2, УОНИ-13/55, АНО-7), под постоянным током. возможна работа в среде флюса или защитных газов (СО2, аргон).
  3. Газовая сварка производится науглероживающим пламенем, левым способом, с предыдущим подогревом до температуры 200˚С, при равномерной низкой мощности подачи ацетилена.
  4. Обязательная термическая обработка деталей: закалка и отпуск либо отдельный отпуск с целью минимизации внутренних напряжений, предупреждения образования трещин, смягчения закаленных мартенситных и трооститных структур.
  5. Контактная точечная сварка выполняется без ограничения.

Таким образом, средне- и высокоуглеродистые конструкционные стали свариваются практически без ограничений, при внешней температуре не ниже 5˚С. При более низких температурах обязателен изначальный подогрев и высококачественная термическая обработка.

Распределение сталей по группам свариваемости

С учетом всех перечисленных факторов, свариваемость стали имеет различные характеристики.

Классификация сталей по свариваемости.

  • Хорошая (при значении Сэкв≥0,25%): для низкоуглеродистых стальных деталей; не зависит от толщины изделия, погодных условий, наличия подготовительных работ.
  • Удовлетворительная (0,25%≤Сэкв≤0,35%): присутствуют ограничения к условиям окружающей среды и диаметру свариваемой конструкции (температура воздуха до -5, в безветренную погоду, толщина до 20 мм).
  • Ограниченная (0,35%≤Сэкв≤0,45%): для образования качественного шва необходим предыдущий подогрев. Он способствует «плавным» аустенитным преобразованиям, формированию устойчивых структур (ферритно-перлитные, бейнитные).
  • Плохая (Сэкв≥0,45%): формирование механически стабильного сварного соединения невозможно без предыдущей температурной подготовки кромок металла, а также последующей термической обработки сваренной конструкции. Для образования нужной микроструктуры необходимы дополнительные подогревы и плавные охлаждения.

Группы свариваемости сталей позволяют легко ориентироваться в технологических особенностях сварки конкретных марок железоуглеродистых сплавов.

Классификация сталей по физическим, химическим и технологическим признакам

По физическим свойствам в классификации (стандарт EN 10027) выделяют группы сталей:

– с особыми физическими свойствами (электропроводностью, коэффициентом линейного расширения и др.);
– с особыми магнитными свойствами (магнитной проницаемостью).

Классификация сталей по механическим свойствам:

– прочности (например, Rm 500 H/мм2, 500 ≤ Rm 700 H/мм2, Rm ≥ 700 H/мм2);
– пределу текучести (например, Rе = 235, 275…или Rе 360, Rе 380 H/мм2);
– относительному удлинению (например, δ≥15, 25 или 35 %);
– ударной вязкости (например, работа удара 27, 40 или 60 Дж при +20, 0, -20, -40, -60°С);
– другим характеристикам.

По химическим признакам стали классифицируют на:

– стойкие против химической коррозии (при нормальной температуре – нержавеющие стали; при высокой температуре – жаростойкие стали);
– стойкие против электрохимической коррозии (стали для работы при нормальной, повышенной или высокой температуре, стойкие против МКК).

Технологические классификационные признаки:

– способ получения стали (кипящие, полуспокойные, спокойные стали);
– термическая и термомеханическая обработка (прокаливаемость, отжиг, нормализация, закалка с отпуском, наклеп, холодная прокатка, горячая обработка давлением и др.);
– способность сталей к обработке давлением (например, штампуемость), резанием, литью и др.;
– свариваемость (по критерию Сэкв , содержанию ферритной фазы в аустенитных сталях и др.).

Классификация сталей по назначению:

При классификации сталей по назначению в одной группе могут оказаться стали различной системы легирования и различных классов качества.

Нелегированные стали классифицируют по назначению на следующие группы:

– конструкционные общего назначения;
– строительные общего назначения;
– для сосудов, работающих под давлением;
– трубные;
– машиностроительные;
– судостроительные;
– автоматные (с повышенным содержанием P и S);
– арматурные;
– рельсовые;
– холодно- и горячекатаные для холодной обработки;
– инструментальные;
– электротехнические.

Легированные стали по назначению классифицируют на:

– строительные;
– машиностроительные;
– судостроительные;
– для сосудов, работающих под давлением;
– для трубопроводов;
– для атомных реакторов;
– для криогенной техники;
– для подшипников;
– нержавеющие стали;
– жаростойкие стали;
– жаропрочные;
– теплостойкие;
– инструментальные;
– быстрорежущие;
– с особыми физическими свойствами.

Как влияют на свариваемость легирующие примеси?

Влияние главных легирующих элементов на свариваемость стали

Фосфор, сера – вредоносные примеси. Содержание данных химических элементов для низкоуглеродистых сталей 0,4-0,5%.

Углерод – важный компонент в составе сплавов, который определяет такие показатели, как закаливаемость, пластичность, прочность, другие свойства материала. Содержание углерода в пределах 0,25% не воздействует на качество сварки. Наличие более 0,25% данного хим. элемента способствует формированию закалочных соединений, зоны термического влияния, образуются трещины.

Медь. Содержание меди как примеси не более 0,3%, как добавки для низколегированных сталей – пределах 0,15-0,50%, как легирующего компонента – не более одного процента. Медь улучшает коррозионную стойкость металла, при этом не ухудшает показатели качества сваривания.

Марганец. Содержание марганца до одного процента не затрудняет сварочный процесс. Если марганца 1,8-2,5%, то не исключается образование закалочных структур, трещин, зоны термического влияния.

Кремний. Этот химический элемент присутствует в металле как примесь — 0,30 процентов. Такое количество кремния не влияет на показатель качества соединения металлов. При наличии кремния в пределах 0,8-1,5%, он выступает легирующим компонентом. В данном случае существует вероятность формирования тугоплавких оксидов, ухудшающих качество соединения металлов.

Никель, как и хром, присутствует в низкоуглеродистых сталях, его содержание составляет до 0,3%. В низколегированных металлах никеля может быть около 5%, высоколегированных – порядка 35 процентов. Химический компонент повышает пластичность, прочностные характеристики металла, повышает качество сварных соединений.

Хром. Количество данного компонента в низкоуглеродистых сталях ограничено до 0,3 процентов, его содержание в низколегированных металлах может быть в пределах 0,7-3,5%, легированных – 12-18 процентов, высоколегированных примерно 35%. В момент сваривания хром способствует формированию карбидов, значительно ухудшающих коррозионную устойчивость металла. Хром способствует формированию тугоплавких оксидов, которые негативно влияют на качество сварки.

Молибден. Наличие этого химического элемента в металле ограничено 0,8 процентами. Такое количество молибдена позитивно сказывается на прочностных характеристиках сплава, но в процессе сварки элемент выгорает, в результате чего на наплавленном участке изделия формируются трещины.

Ванадий. Содержание этого элемент в легированных сталях может составлять от 0,2 до 0,8 процентов. Ванадий способствует повышению пластичности, вязкости металла, улучшает его структуру, повышает показатель прокаливаемости.

Ниобий, титан. Данные химические компоненты содержатся в жаропрочных, коррозионно-стойких металлах, их концентрация составляет не более одного процента. Ниобий и титан понижают показатель чувствительности металлического сплава к межкристаллитной коррозии.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий

Adblock
detector