Применение дуговой сварки

Электроды

Неплавящиеся вольфрамовые электроды для дуговой сварки в защитных газах изготавливаются 4-х типов (согласно ГОСТ 23949-80):

ЭВЧ – чистый вольфрам без специальных добавок;
ЭВЛ – вольфрам с добавкой окиси лантана (1,1 – 1,4%);
ЭВИ – вольфрам с добавкой окиси иттрия (1,5 – 3,5%);
ЭВТ – вольфрам с добавкой двуокиси тория (1,5 – 2%).

Диаметр вольфрамового электрода выбирают в зависимости от его марки, величины и рода сварочного тока. Электроды ЭВЧ используют для сварки на переменном токе, а прочие для сварки на переменном и постоянном токах прямой и обратной полярности.

Диаметр электрода, мм Постоянный ток, полярность Переменный ток, А
прямая обратная
ЭВЛ ЭВИ ЭВТ ЭВЛ ЭВИ ЭВТ ЭВЛ ЭВИ ЭВТ
2 80 180 120 20 25 25
3 230 380 300 35 50 30 150 180
4 500 620 590 60 70 60 180 170 220
5 720 920 810 70 210 270
6 900 1500 1000 100 120 110 250 250 340

Род тока и полярность влияют, прежде всего, на форму провара. Эта зависимость условно представлена на рисунке.

А – постоянный ток прямая полярность;
Б – постоянный ток обратная полярность; В – переменный ток;

В процессе сварки происходит затупление электрода и, как следствие, уменьшение глубины провара. Затачивать конец электрода для сварки переменном током рекомендуется в виде сферы, а для сварки постоянным током – в виде конуса. Угол конуса должен быть 28 – 30°, длина конической части должна составлять 2 – 3 диаметров электрода. Конус после заточки должен быть притуплен, диаметр притупления должен быть от 0,2 до 0,5 мм.

Процесс заточки электрода показан на рисунке ниже. При заточке электрода могут использоваться переносные аппараты, или стационарные со специальными направляющими для электрода или без них.

Заточка W-электрода

Расход электродов диаметром 8 – 10 мм при беспрерывной работе в течение 5 часов:

ЭВЧ – 8,4 г/час, ЭВЛ – 1,2 г/час, ЭВИ – 0,18 г/час, ЭВТ – 1,4 г/час. Чтобы уменьшить расход электрода, подачу инертного газа следует начинать до включения сварочного тока, а прекращать после выключения тока и остывания электрода.

Циркониевые и гафниевые электроды используют в горелках для плазменной сварки. Сварка графитовым электродом используется очень редко – главным образом для получения сварных соединений неответственного назначения при изготовлении изделий из низкоуглеродистой стали, заваривании дефектов на чугунном литье и при сварке меди в азоте на постоянном токе прямой полярности.

Сварочный источник питания

Сварочный источник питания обеспечивает сварочную дугу электрической энергией. В качестве источника питания при сварке ТИГ используются:

– сварочные трансформаторы – при сварке на переменном токе;
– сварочные выпрямители и генераторы – при сварке на постоянном токе;
– универсальные источники питания, обеспечивающие, как сварку переменным, так и постоянным током.

Источники питания для сварки ТИГ должны иметь крутопадающую внешнюю вольт-амперную характеристику (Источники питания для дуговой сварки). Такая характеристика обеспечивает постоянство заданного значения тока сварки при нарушениях длины дуги, например, из-за колебаний руки сварщика.

Сварочная горелка

Основным назначением горелки для дуговой сварки ТИГ является жесткое фиксирование вольфрамового электрода (W-электрода) в требуемом положении, подвода к нему электрического тока и равномерного распределения потока защитного газа вокруг сварочной ванны. Она состоит из корпуса (ручки) и головки покрытой изолирующим материалом. Обычно, в рукоятку горелки встроена кнопка управления для включения и выключения тока сварки и защитного газа. Некоторые современные горелки имеют кнопку управления током в процессе сварки. Цанга позволяет жестко закрепить W-электрод в горелке; для этого необходимо закрутить тыльный колпачок до отказа. Обычно, тыльный колпачок достаточно длинный, чтобы вместить в себя всю длину электрода, как это показано на рисунке. Но для работы в стесненных условиях горелки могут снабжаться и короткими колпачками.

Горелки для сварки ТИГ разработаны самых разных конструкций и размеров в зависимости от максимального требуемого тока, а также от условий ее применения. Размер горелки также влияет на то, как горелка будет нагреваться и охлаждаться при сварке. Конструкция некоторых горелок предполагает их охлаждение потоком защитного газа (это так называемые, горелки воздушного охлаждения). Горелки также отводят тепло в окружающее пространство. Имеются также горелки с водяным охлаждением. Они, обычно, предназначаются для использования на повышенных токах сварки. Горелки ТИГ с водяным охлаждением, как правило, имеют меньшие размеры, чем горелки воздушного охлаждения для тех же токов сварки.

Газовое сопло. Функцией газового сопла является направлять защитный газ в зону сварки с тем, чтобы он замещал окружающий воздух. Газовое сопло крепится к горелке ТИГ на резьбе, что, в случае необходимости, облегчает его замену. Они обычно изготавливаются из керамического материала для того, чтобы противостоять интенсивному нагреву.

Газовые линзы. Другим типом сопел являются сопла со встроенными газовыми линзами, в которых поток газа проходит через металлическую решетку, что придает ему большую ламинарность, обеспечивающую более надежную защиту, так как такой поток более устойчив к воздействиям поперечных воздушных потоков и действует на большее расстояние. Преимуществом сопла, обеспечивающего ламинарный поток газа, заключается в том, что можно устанавливать больший вылет электрода, что дает сварщику лучший обзор сварочной ванны. Газовые линзы также снижают расход газа.

Обычное сопло (слева) и сопло с газовой линзой (справа)

Форма потока защитного газа от обычного сопла

Форма потока защитного газа от сопла с газовой линзой

Сварка неповоротных стыков труб

Вертикальные неповоротные стыки сваривают снизу вверх.

Сварку первых трех слоев в стыках труб диаметром более 219 мм следует выполнять обратноступенчатым способом. Длина каждого участка должна быть 200-250 мм.

Длина участков последующих слоев может составлять половину окружности стыка. Стыки труб с толщиной стенки до 16 мм можно сваривать участками длиной, равной половине окружности, начиная со второго слоя.

Очередность выполнения швов (1-14) и слоев (I-IV) одним сварщиком

Очередность наложения превого слоя двумя сварщиками при сварке неповоротных стыков труб диаметром более 219 мм

Горизонтальные неповоротные стыки труб диаметром более 219 мм, выполняемые одним сварщиком, необходимо сваривать обратноступенчатым способом участками длиной 200-250 мм. Четвертый и последующие слои можно сваривать вкруговую.

Очередность (1-12) выполнения швов одним сварщиком

При сварке горизонтального стыка двумя сварщиками последовательность сварки корневого шва зависит от диаме тра труб. Если диаметр менее 300 мм, то каждый сварщик заваривает участок длиной в половину окружности. В один и тот же момент сварщики должны находиться у диаметрально противоположных точек стыка. Если диаметр труб 300 мм и более, то корневой шов сваривают обратноступенчатым способом участками по 200-250 мм.

В стыках труб диаметром до 300 мм с толщиной стенки более 40 мм первые три слоя следует сваривать обратноступенчатым способом, а последующие слои – участками, равными половине окружности.

Стыки труб из низколегированных сталей диаметром свыше 600 мм при толщине стенки 25-45 мм сваривают так: все слои шва выполняют обратноступенчатым способом участ ками не более 250 мм.

Трубы диаметром более 600 мм из хромомолибденованадиевых сталей сваривают одновременно двое и более сварщиков, у каждого из которых свой отрезок стыка. Применяют обратноступенчатый способ (участки по 200-250 мм). Четвертый и последующие слои допускается выполнят ь участками, равными четверти окружности.

Очередность выполнения и примерное расположение слоев и валиков (1 – 20) при сварке вертикального и горизонтального стыков толстостенных труб из углеродистых и низколегированных сталей

Виды дуговой сварки

РД сварка металлоконструкций может проводиться разными способами, которые могут отличаться технологией, видами используемого оборудования и расходных материалов.

Выделяют несколько классификаций, которые пользуются высоким спросом:

  • в зависимости от вида механизации – механизированный или автоматизированный способ;
  • в соответствии с видом и полярностью тока;
  • тип электрической дуги;
  • разновидность используемой защиты сварочной области;
  • в зависимости от используемых электродов.

Но стоит учитывать, что каждый вид имеет подвиды сварочного процесса. Каждый из них имеет определенную технику проведения. Все же стоит рассмотреть каждую классификацию сварки с использованием дуги.

В соответствии с автоматизацией сварных работ выделяют:

  1. Ручного типа.
  2. Полуавтоматическая – подача проволоки для сварочного процесса осуществляется автоматически, а движение электрода производится вручную.
  3. Автоматического вида – передвижение проволоки и электрода производится автоматически.

В зависимости от вида и полярности тока сварка бывает:

  1. С использованием постоянного тока. Осуществляет соединение поверхностей при помощи тонкого шва.
  2. С применением высокочастотного тока. Плавление электрода осуществляется струйно, устраняются прорези, привариваются прихваты.
  3. Импульсная.
  4. С применением переменного тока. Обычно эта технология применяется для разрезания металлических листов.

В зависимости от типа защитного средства от влияния кислорода:

  • шлаковая;
  • флюсовая;
  • инертно-газовая.

Стоит отметить! Все способы защиты могут зависеть от условий и целей рабочего процесса. Главное назначение состоит в предотвращении попадания в сварочную область кислорода, который негативно влияет на прочность шва.

В зависимости от видов используемых электродов:

  1. Плавящийся стержень с обсыпкой. Используется для формирования сварочной зоны и соединения кромок.
  2. Неплавящийся стержень из вольфрама. Применяется для формирования напылений, восстановления поврежденных или разрушенных заготовок, наваривания наплывов.

В соответствии с условиями горения выделяют:

  1. Открытая дуга. Она видима, но наблюдение за ней должно производиться через специальные средства для защиты глаз. Открытый вид применяется при проведении ручной технологии и сварок с защитными газами.
  2. Закрытая. Вид дуги невозможно увидеть визуально. Она присутствует в составе расплавленной металлической смеси – флюсе, шлаке.
  3. Полуоткрытого вида. Дуга видна. Но видеть возможно только одну часть. Первая имеется в металле, а вторая располагается над ним. Наблюдать за сваркой рекомендуется только через элементы для защиты глаз. Этот вид дуги используется при сваривании алюминия автоматическим способом.

По способу защиты сварной ванны:

  • без использования защитных элементов – голый электрод, стабилизирующее покрытие электрода;
  • применение шлаковой защиты – под флюсом, толстопокрытые стержни;
  • шлакогазовая защита – стержни толстопокрытого типа;
  • газовая защита – в газовой среде;
  • комбинированные защитные средства – среда из газа, покрытие, флюс.

Основы сварочного процесса

Первым делом решается вопрос, на каком типе тока нужно проводить работу. Современные сварочные аппараты способны функционировать при любом токе. Просто нужно учитывать, что с переменным током работать сложнее, потому что электрическая дуга не очень устойчива, и сварочный шов может потерять в качестве.

Поэтому выбор типа тока будет в большей степени зависеть от профессионального опыта: если он есть, можно работать и на переменном. Если же вы в начале славного пути сварщика, вашим выбором должен оставаться постоянный ток: на нем работать легче.

Кстати, с некоторыми металлами или сплавами можно иметь дело только на постоянном токе.

Обратная и прямая полярность.

Полярность подключения может быть также двух видов:

  1. Прямая полярность имеет место при подключении минуса на электроде, а плюса на массе.
    В этом случае направление тока идет от электрода к детали, которая как раз нагревается – в отличие от электрода, который остается холодным. Прямая полярность применяется в узких сферах, к примеру, во время сварки листового металла.
  2. Обратная полярность – это подключение плюса на электроде, а минуса на клемме массы.
    В данном случае направление тока идет в обратном направлении: от металла к электроду, что приводит к нагреванию электрода.

Следующий шаг – определиться с правильной силой тока, которая зависит прежде всего от толщины свариваемого металла. Рассчитывать силу тока удобнее по формуле: 40 ампер на каждый миллиметр толщины детали. Значение тока выставляется легко: на панели регулятором.

Теперь пора разжигать электрическую дугу – главный элемент ММА. Данный этап можно назвать самым ответственным и самым сложным. Пожечь дугу можно двумя способами: либо прикоснуться концом электрода и затем резко оторвать его, либо чиркать электродом, как спичкой.

Главное – получить стабильную и ровную дугу, от этого зависит качество сварочного шва в итоге. Прежде всего для этого электрод нужно держать над поверхностью всегда на одинаковом расстоянии – вести его как можно ровнее. Расстояние должно быть оптимальным.

Будете держать выше, чем нужно – дуга потухнет, ниже – электрод залипнет на поверхности.

Сам процесс сварки идет в сварочной ванне. Чтобы она формировалась, металл должен хорошенько прогреться, для этого можно обернуть пару раз электрод в месте старта сварки. Ширина сварочной ванны должна быть адекватной и одинаковой ширины по ходу всего шва.

Для того, чтобы все это получилось, нужна, конечно, практика. Качественная сварка ММА получится только у мастеров с опытом. Новичкам такие требования поначалу кажутся очень сложными. Но метод осваивается быстро. Ведь именно из-за простоты и доступности ММА так популярна и на строительных площадках, и на дачных участках.

Сущность метода ручной дуговой сварки

Сварка деталей покрытым металлическим электродом возможна благодаря высокой тепловой мощности сварочной дуги, под воздействием которой металлы расплавляются. При сварке покрытым электродом сварная дуга расплавляет основной металл и, в то же время, металлический электрод. Участок расплавленного металла называют сварной ванной. Капли электродного металла расплавляются и переносятся в сварную ванну, увеличивая ее объем, поэтому покрытый электрод является еще присадочным материалом.

Под воздействием сварочной дуги расплавляется покрытие нанесенное на поверхность электрода. В состав покрытия входят измельченные компоненты разного назначения — шлакообразующие, газообразующие, связывающие, раскислители и другие. Шлак, полученный плавлением покрытия, обволакивает сварную ванну и защищает жидкий металл от взаимодействия из атмосферными газами. Считается, что при ручной сварке наблюдение за формированием шва ограниченное из-за наличия на поверхности сварной ванны шлака. Также покрытие выделяет газы при расплавлении его компонентов, защищающие дугу и зону сварки от воздуха. Это способствует стабильному и стойкому горению дуги.

По мере того как сварщик формирует шов, перемещая электрод и дугу вдоль оси сварного соединения, сварная ванна с жидким металлом постепенно кристаллизуется. На поверхности кристаллизованного шва застывает шлак и превращается в шлаковую корку.

После обрыва сварочной дуги необходимо очистить шов от шлаковой корки при помощи специального молотка, кирки и/или щетки. Если были выбраны правильные режимы сварки без ошибок в техники выполнения шва, под шлаковой коркой получим сварной шов необходимой формы, качества и геометрических размеров. Качество сварного шва в значительной степени будет зависеть от профессионализма сварщика.

Технология проведения работ

Способы дуговой электросварки

Прежде чем говорить о технологии проведения работ по сварке, нужно изучить правила сварки. Основу составляют правила безопасности. Дело в том, что электродуговая сварка представляет собой очень опасный процесс.

Во время проведения работ выделяются большие объемы вредных для здоровья газообразных веществ, поэтому сваривание требуется проводить на открытом воздухе или в помещении, которое является хорошо проветриваемым.
Помимо этого, процесс связан с использованием электротока большой силы и напряжения, что требует особых мер предосторожности. Жидкий металл излучает в большом количестве УФ-излучение, которое пагубным образом влияет на зрение

Процесс выполнения ручной электросварки предусматривает возбуждение электрической дуги, перемещение спецэлектрода в процессе сваривания, определение порядка накладки швов, который находится в зависимости от особенностей свариваемых изделий. Возбуждение электродуги происходит при кратковременном прикасании торцом металлического стержня к свариваемым изделиям и последующем его отведении на некоторое расстояние, которое, как правило, составляет 3-5 мм.

В процессе осуществления сваривания заготовок требуется постоянно вести контроль длины электродуги, которая зависит от типа электрода и его диаметра. Длина дуги сильно влияет на качество шва получаемого при работе и его геометрию. Наличие длинной дуги способствует протеканию процесса окисления металла образующегося шва и повышает вероятность брызгообразования.

При сварочных работах движение электродом осуществляется как минимум в трех направлениях. Первое движение – вдоль оси стержня электрода, скорость соответствует скорости осуществления плавки. Второе осуществляется вдоль оси шва и определяет скорость сваривания изделий. Третье – колебательное движение стержня поперек шва, образуемого при сваривании. Это перемещение стержня обеспечивает качественное проваривание кромок сварного шва. Тип поперечного смещения зависит от таких факторов, как форма шва, его размер и пространственное положение.

В процессе осуществления поперечного движения на поверхности шва происходит образование валика определенной ширины, который повышает качество сваривания. Тип движения стержня зависит от физических качеств заготовок, которые подвергаются свариванию пространственного положения, в котором проводится работа.

Подбор сварочных параметров

Основные параметры дуговой сварки — это сила тока и напряжение (но оно фиксировано). Частота имеет меньшее значение, так как в настоящее время применяются, как правило, установки для — инверторы.

Для сварки с помощью электричества, вне зависимости от способа, действует прямая пропорциональная зависимость: чем толще металл, тем больше должна быть сила тока при фиксированном напряжении. Для сравнения: листы толщиной 3 мм варят током 175-185 А, 5 мм — не менее 200 А, 10 мм — 300-330 А.

Но при этом очень большое значение имеет также толщина сварочного электрода, и его соответствие по химическому составу тому металлу, который предполагается обрабатывать.

Стандартный электрод для дуговой сварки имеет толщину 3 мм. Он пригоден для сваривания деталей с толщиной кромок 2-3 мм. Для более толстого металла можно руководствоваться правилом, что диаметр электрода должен быть на 1-2 миллиметра меньше толщины металлических пластин, которые с его помощью предполагается соединить.

Максимальная толщина электродов, выпускаемых промышленностью, составляет 6 мм. Они пригодны для сварки десятимиллиметровых стальных листов.

Каждая пачка электродов имеет свою маркировку, указывающую, для каких целей они предназначены.

Особенности сварки

Понимая принцип ручной дуговой сварки плавящимся электродом можно приступить к самому сварочному процессу. Для начала разберемся, в каких случаях такая сварка целесообразна. РД по металлу целесообразна том случае, если толщина детали начинается от 2 миллиметров и не превышает 50 миллиметров. Также целесообразна сварка легированных, углеродистых и нержавеющих сталей. РДС отлично подойдет для мелкосерийного производства или для сварки штучных изделий. Если металлы толще и деталей много, то рекомендуем заменить ММА сварку на MAG.

Если детали будут слишком тонкими, то они будут плавиться слишком быстро. Это приводит к образованию дефектов, шов просто не успевает сформироваться. Даже если вы установите минимальное значение тока. Используйте другие технологии сварки тонкого металла, не рискуйте.

Выше мы писали, что возможна сварка деталей толщиной до 50 миллиметров. Но мы все же рекомендуем соединять металлы с толщиной максимум 20 миллиметров. Сварка толстых деталей экономически невыгодна при использовании технологии ручной дуговой сварки. Все эти правила не применимы к ситуации, когда нужно сварить короткий шов, чтобы произвести небольшой ремонт. Если участок сварки слишком мал, вы не будете использовать дорогостоящее оборудование, газ, флюсы и прочее. В таких ситуациях ручная дуговая сварка MMA вполне целесообразна при сварке деталей толщиной до 200 миллиметров.

Технология ручной дуговой сварки начинается с основ о пространственном положении. Мы писали, что ручная дуговая сварка плавящимся электродом возможна в любом положении. Это правда, но с оговорками. Дело в том, что не все электроды позволяют выполнить сложные потолочные или вертикальные швы. Они плавятся слишком быстро и стекающий металл не позволяет сформировать шов

Обратите на это внимание перед выполнением ответственной работы

По этой причине наилучший результат достижим именно в нижнем или горизонтальном пространственном положении. Такую работу сможет выполнить сварщик даже с низкой квалификацией, можно использовать электроды большего диаметра и установить на сварочном аппарате большую силу тока, чтобы ускорить рабочий процесс. Так что если вы можете заменить потолочные швы на нижние — не отказывайтесь от такого решения.

Если вы используете метод ручной дуговой сварки покрытыми стержнями и вам все же нужно сделать потолочных шов, то выберите электроды небольшого диаметра и установите на аппарате минимальное значение сварочного тока. Работайте не медленно и не быстро, постарайтесь найти «золотую середину» в скорости ведения дуги. Ведите дугу уверенно и не отклоняйтесь в стороны.

Теперь поговорим о типе и полярности тока. Сварка ММА может производить на постоянке и на переменке, выбор режима зависит от электродов. Обязательно читайте упаковку ваших стержней перед работой, некоторые электроды могут быть предназначены только для работы на одном типе тока.

Одно известно точно — при постоянном токе дуга горит стабильнее, чем при переменном. Это заметно даже при использовании универсальных стержней, способных работать с любым родом тока. Словом, если вы начинающий сварщик, то приобретайте универсальные комплектующие и экспериментируйте с настройками.

Что касается полярности, то ее выбор зависит от того, какая скорость плавления электрода вам необходима. Если выберите обратную полярность и установите постоянный ток, то электрод будет плавиться медленнее и равномернее. Это наиболее приемлемый вариант. Есть электроды, которые работают одинокого хорошо с любой полярностью.

Ручная сварка железа или никеля имеет свои сложности. В работе металл может быть подвержен проблеме, называемой магнитным дутьем. Магнитное дутье — это когда дуга начинает непроизвольно отклоняться от сварочной ванны из-за магнитных свойств металла. Чтобы избежать этих проблем установите на сварочнике переменный ток, это может помочь.

Что означает маркировка

Рассматривая все о дуговой ручной сварке, стоит особое внимание уделить электродам, именно эти компоненты помогают сформировать прочный и качественный сварной шов

Важно учесть, что маркировка стержней определяет важные функции и качества:

  • для каких металлов предназначены стержни;
  • положения их удерживания при сварочном процессе – вертикальное, горизонтальное, под углом;
  • толщину и состав покрытия.

Вид маркирования сочетает буквы и цифры. Сразу после названия и марки идет буква, которая определяет назначение стержней:

  • У – для низколегированной и среднеуглеродистой стали;
  • Т – для легированной с высокой теплоустойчивостью;
  • Н – для наплавления;
  • А – для металлических основ пластичного типа.

Затем идет буква, которая указывает на показатель толщины покрытия: М – тонкое покрытие, С – средняя толщина, Д – толстое, Г – сильно толстое. После идет буквенное обозначение типа стержня. Если это Е, то он является плавящимся.

После букв идут цифры. Они указывают на степень возможного предела прочности на растяжение, показатели относительного удлинения, температурный режим сохранения ударной вязкости. Они важны только для профессионалов, работающие на ответственных и важных предприятиях.

После цифр следуют буквы, которые указывают на тип материала обмазки стержня:

  1. А – кислотное соединение.
  2. Б – из щелочей.
  3. Ц – из целлюлозы.
  4. Р – рутиловое.
  5. П – другие разновидности.

Далее идут последние цифры в маркировке электродов, и они означают важные параметры стержней – положение в пространстве, в котором можно производить способ сварки РДС, и характеристики тока для сварочного процесса.

Характеристики и описания

ММА сварочный аппарат это тип инвертора, подающего постоянный либо переменный ток на плавящийся электрод. Главными характеристиками, которыми должен обладать инвертор, являются:

  1. Размер электрода (максимальный).

Этот параметр также характеризуется диапазоном рабочего тока.

  1. Тип сварочного тока.

АС (переменный) либо DC (постоянный). В последнем случае процесс сварки протекает проще, потому большинство аппаратов подают именно постоянный ток. Переменный нужен для соединения элементов из цветных металлов.

  1. Безнагрузочное напряжение.

При включении инвертора до образования дуги на конце электрода напряжение значительно выше, чем во время сварки. Чем выше это напряжение, тем проще поджечь дугу. Однако, стандартами «холостое напряжение» аппаратов ограничивается уровнем 100 В.

Важно! Для минимизации рисков используются VRD-блоки, сокращающие напряжение на конце электрода до нескольких вольт. Напряжение восстанавливается до требуемого для сварки уровня при касании электродом поверхности металла.

  1. Период включения (ПВ) и полезная нагрузка (ПН).

ПВ обозначается двумя цифрами, первая из которых – сила тока, вторая – процент времени. К примеру, расшифровка «130А-50%» обозначает, что током 130 А аппарат может сваривать только половину времени и столько же должен простоять в ожидании охлаждения до рабочей температуры.

  1. Уровень защиты IP.

Большинству инверторов на IGBT-транзисторах присваивается класс изоляции Н, указывающий на предельную температуру нагревания 180°С. Аппараты классом ниже (F) имеют предел нагрева до 155°С, классом выше (C) – более 180°С.

Параметр указывает на вариант исполнения аппарата относительно воздействия твердых тел (первая цифра) и жидкостей (вторая). Инверторы выпускаются преимущественно с уровнем защиты, соответствующим классам IP21-23.

  1. Нагревоустойчивость изоляции.
  1. Рабочая температура.

На возможность эксплуатации сварочных инверторов накладываются определенные ограничения, связанные с охлаждением и нагревом от внешней среды. Большинство устройств работает в температурном диапазоне 0-40°С.

Важно! Для работы на морозе предельные значения минусовой температуры должны указываться как «-20°С» или «-40°С».

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector