Механизм пластической деформации
В основе пластического деформирования металлов лежит перемещение дислокаций практически при любых температурах и скоростях деформирования.
Сущностью пластического деформирования является сдвиг в результате которого одна часть кристалла смещается по отношению к другой части. Для сдвига в идеальном кристалле, в котором все атомы на плоскости сдвига сразу перемещаются на одно межатомное расстояние, нужно, как показывают расчеты, касательное напряжение 0,1 G (G – модуль упругости сдвига). В реальных кристаллах сдвиг происходит при напряжениях всего 10 – 4
G, что в 1000 раз меньше теоретически необходимых. Это объясняется тем, что происходит за счет скольжения дислокаций и в нем участвует незначительная доля атомов, расположенных на плоскости сдвига (рис.1).
Имеется две разновидности сдвига: скольжение и двойникование. В обоих случаях пластическая деформация связана с определенными плоскостями и направлениями в решетке.
Фактически пластическая деформация осуществляется за счет перемещения дислокаций. Рассмотренная схема пластической деформации позволяет сделать вывод; что процесс сдвига в кристалле будет происходить тем легче, чем больше дислокаций будет в металле. Большие деформации возможны только вследствие того, что движение первичных дислокаций вызывает появление большого количества новых дислокаций в процессе пластической деформации (рис.2).
а)
б)
Рисунок 1. Схема деформации: а) схема пластического сдвига в идеальной кристаллической решетке; б) дислокационная схема пластического сдвига
Однако, оказывается, что реальная прочность металлов падает с увеличением числа дислокаций только вначале. Достигнув минимального значения при некоторой плотности дислокаций, реальная прочность вновь начинает возрастать. Такого рода зависимость между реальной прочностью и плотностью дислокаций (и других несовершенств) схематически представлена на рис.3. Повышение реальной прочности с возрастанием плотности дислокации объясняется тем, что при этом возникают не только параллельные друг другу дислокации, но и дислокации в разных плоскостях и направлениях. Такие дислокации будут мешать друг другу перемещаться, и реальная прочность металла повысится.
Следовательно, в той или иной степени наличие дислокаций в реальном металлическом кристалле является причиной более низкой его прочности по сравнению с теоретической, и одновременно придающей способность пластически деформироваться.
Рисунок 2. Механизм образования дислокации в процессе пластической деформации
Рисунок 3. Прочность кристаллов в зависимости от искажений решетки (числа дефектов):
1 – теоретическая прочность;
2 – чистые неупрочненные металлы;
3 – сплавы, упрочненные легированием, наклепом, термической и термомеханической обработкой.
Способность реального металла пластически деформироваться является его важнейшим и полезнейшим свойством. Это свойство используют при различных технологических процессах – при протяжке проволоки, операциях гибки, высадки, вытяжки, штамповки и т.д. Большое значение оно имеет и для обеспечения конструктивной прочности или надежности металлических конструкций, деталей машин и других изделий из металла. Опыт показывает, что если металл находится в хрупком состоянии, т.е. если его способность к пластическому деформированию низка, то он в изделиях склонен к внезапным так называемым хрупким разрушениям, которые часто происходят даже при пониженных нагрузках наизделие.
Процесс – рекристаллизация
Поэтому процесс рекристаллизации начинается, по-видимому, с момента возникновения новой фазы. Характер изменения удельной поверхности авторы связывают с тем, что в процессе гидратации имеют место два противоположно направленных процесса: диспергирование и кристаллизация.
На процессы рекристаллизации влияют условия деформации: температурный интервал горячего деформирования и степень деформации. Нагрев под деформацию при температурах ниже полиморфного превращения практически не вызывает роста макрозерна; микроструктура в процессе деформации при этих температурах сильно измельчается.
Поскольку процессы рекристаллизации связаны с перегруппировкой участков длинных молекулярных цепей, их скорость невелика и часто оказывается соизмеримой с экспериментально задаваемыми скоростями повышения температуры. В этом интервале условий картина плавления ( в частности, фиксируемая методами калориметрии или дифференциального термического анализа) часто зависит от скорости нагревания испытываемого образца. Например, при медленном нагревании на кривой ДТА образца в области температур ниже Т л может появиться несколько пиков, отражающих последовательные процессы плавления и рекристаллизации.
Схемы режимов механотермических обработок ( на 1. 2. 3. 4 отжиг при температуре 600 С. / – 30 мин. 2 – 8 час. 3 – 25 час. 4 – 100 час. 5 – 25 час. при температуре 900 С-2 час. |
Происходящие процессы рекристаллизации показаны в гистограммах распределения зерен по размерам при различных режимах меха, нотермических обработок.
Исследование процесса рекристаллизации в дисперсной системе должно быть синтетическим, учитывающим как закономерности дисперсной системы в целом, так и индивидуальные особенности составляющих ее частей.
Протекание процессов рекристаллизации сопровождается рез – – ] ким снижением прочности наклепанного металла и для работы материалов при высоких температурах обычно недопустимо. Поэтому Трекр является верхней температурной границей применения теплоустойчивых и жаропрочных материалов.
Развитие процесса рекристаллизации в сплавах МА2 и МАЗ при деформации образцов на гидравлическом прессе с качественной стороны мало отличается от рекристаллизации чистого магния ( фиг.
Схема изменения формы зерен при деформации ( сжатии металла. |
Сущность процесса рекристаллизации заключается в том, что в предварительно деформированном металле под влиянием достаточно высокой температуры подвижность атомов увеличивается, в результате чего происходят перемещения, которые сопровождаются восстановлением кристаллической решетки, искаженной под действием приложенных сил. Деформированный металл под влиянием температурного воздействия перекристалли-зовывается, восстанавливая присущую ему устойчивую структуру и устраняя эффект наклепа. При этом необходимо иметь в виду, что рекристаллизация, как установлено, проходит только при температурах выше 0 4 от абсолютной температуры плавления металла. Абсолютная температура – температура, выраженная в градусах Кельвина, К.
С процессами рекристаллизации связаны, в частности, явления у ста л ости и п ол з у чести металлов. Металл, подвергающийся таким переменным нагрузкам в течение длительного времени, может неожиданно разрушиться при нагрузке, гораздо меньшей, чем при испытаниях данного металла на прочность. Ползучесть заключается в деформации металла при нагрузках, значительно меньше допускаемых при механических испытаниях. Места излома ( разрушения) металлов при явлениях усталости и ползучести характеризуются структурой, резко отличающейся от структуры неразрушенной части металла.
С процессами рекристаллизации связаны, в частности, явления у ста л ости и п о л з у ч е сти металлов. Металл, подвергающийся таким переменным нагрузкам в течение длительного времени, может неожиданно разрушиться при нагрузке, гораздо меньшей, чем при испытаниях данного металла на прочность. Ползучесть заключается в деформации металла при нагрузках, значительно меньше допускаемых при механических испытаниях. Места излома ( разрушения) металлов при явлениях усталости и ползучести характеризуются структурой, резко отличающейся от структуры неразрушенной части металла.
В процессе рекристаллизации в золях и гелях уменьшается удельная поверхность, а следовательно, и величина адсорбции. В результате рекристаллизации происходит десорбция ранее адсорбированных веществ.
В процессе рекристаллизации они изменяются сильно. Последующий процесс роста зерен слабо влияет на эти хар актеристики.
Схема зависимости числа рефлексов на дебаевском. |
Описание процесса
Рекристаллизация характеризуется следующими показателями:
- скоростью протекания рекристаллизации;
- температурой начала кристаллизации;
- последовательностью рекристаллизационных преобразований.
При постепенном повышении температуры наступает момент,когда начинается разрушение прочных кристаллических связей. Температура, при которой он начинается, называется температурный порог рекристаллизации. Этот показатель во многом зависит от чистоты материала, то есть количества имеющихся добавок и примесей. Например, для алюминия этот порог равен 100 °С, для железа обладающего нормальной технической чистотой он равен 450 °С. Для меди она составляет 270 °С. В теории металловедения получена однозначная зависимость, которая связывает абсолютную температуру порога рекристаллизации и температуру плавления. Эта температура справедлива для всех металлов и сплавов.Теория описания этого показателя полностью подтверждается на практике.
Было установлено, что температура начала кристаллизации связана с температурой плавления через определённый коэффициент. Он имеет свою величину для различных материалов. В частности принято считать, что этот коэффициент равен:
- для металлов с небольшим количеством примесей и добавок он равен 0,4;
- металлы с высокой чистотой обладают коэффициентом 0,1-0,2;
- для так называемых твёрдых растворов он находится в интервале от 0,5 до 0,8.
Более точные значения для каждого материала можно найти в справочной литературе по металловедению.
В зависимости от химических и физических свойств и условий протекания процесса зависит скорость рекристаллизации.Она изменяется при изменении состава металла, давления или механического воздействия на образец. Скорость влияет на рекристаллизационные процессы, конечный результат преобразований.Очень важным является возможность регулирования скорости этого превращения. Например, при производстве так называемой трансформаторной стали необходимо обеспечивать условия формирования крупных кристаллов, которые будут ориентированы в одном направлении. Эта задача решается с помощью соответствующих добавок. Такими добавками служат сера и марганец. Эти добавки создают соответствующий катализ для получения материала с необходимыми физическими и механическими характеристиками.
В результате применения катализаторов, создания определённых условий (температуры, давления) начинается собирательный процесс зёрен необходимого размера и формы с их строгой ориентацией, что позволяет придать металлу требуемые свойства.
Принцип
Многие процессы изготовления металла включают холодную обработку, такую как лист холодной прокатки и листовая сталь, волочение проволоки и глубокая волочение. В связи с металлургическими изменениями, которые происходят с металлом при холодной обработке, пластичность металла уменьшается с увеличением объема холодной обработки. Наступает момент, когда дополнительная холодная обработка невозможна без образования трещин в металле. На этом этапе необходим рекристаллизационный отжиг металла.
Во время этого процесса отжига происходят металлургические изменения, которые возвращают металл в его состояние после холодной обработки. Эти изменения приводят к снижению текучести металла и прочности на растяжение, а также к повышению его пластичности, что обеспечивает дальнейшую холодную обработку. Для того чтобы эти изменения произошли, металл должен быть нагрет выше температуры его рекристаллизации. Температура рекристаллизации для конкретного металла зависит от его состава.
Металлургические эффекты холодной обработки
Во время холодной обработки увеличивается число дислокаций в металле по сравнению с его предварительно холодной обработкой. Дислокации являются дефектами в расположении атомов в металле. Увеличение числа дислокаций приводит к увеличению выхода металла и прочности на разрыв и снижению его пластичности. После определенного количества холодных работ металл не может быть подвергнут холодной обработке без растрескивания. Степень холодной обработки, которую конкретный металл может выдержать перед растрескиванием, зависит от его состава и микроструктуры.
Металлургические эффекты рекристаллизационного отжига
Во время рекристаллизационного отжига в холодном металле образуются новые зерна. Эти новые зерна имеют значительно уменьшенное количество дислокаций по сравнению с металлом холодной обработки. Это изменение возвращает металл в состояние после холодной обработки, с более низкой прочностью и повышенной пластичностью.
В течение продолжительного времени при температуре отжига некоторые из вновь образованных зерен растут за счет соседних зерен. Некоторое дальнейшее снижение прочности и повышение пластичности увеличивается по мере того, как средний размер зерна увеличивается во время фазы роста зерна в процессе отжига.
Конечный размер зерна зависит от температуры отжига и времени отжига. Для конкретной температуры отжига, поскольку время при температуре увеличивается, размер зерна увеличивается. В течение определенного времени отжига по мере увеличения температуры размер зерна увеличивается. Кусок металла с крупными зернами имеет меньшую прочность и пластичность, чем кусок металла из того же сплава с более мелкими зернами.
Металл после рекристаллизационного отжига
На рисунке показаны микрофотографии латунного сплава, который был подвергнут холодной прокатке до 50% его первоначальной толщины и отожжен при двух разных температурах. На рисунке слева показана микроструктура холоднокатаного образца. Центральная фигура показывает микроструктуру образца, который был подвергнут холодной прокатке и затем отожжен при 1022 ° F (550 ° C) в течение 1 часа. На рисунке справа показана микроструктура образца, который был подвергнут холодной прокатке и затем отожжен при 1202 ° F (650 ° C) в течение 1 часа.
Холоднокатаный образец имел предел текучести 80 тыс.фунтов / кв.дюйм (550 МПа). Образец, который был отожжен при 1022 ° F (550 ° С) в течение 1 часа, имел предел текучести 11 тыс. Фунтов / кв. Дюйм (75 МПа). В этом образце много мелких зерен. Образец, который был отожжен при 1202 ° F (650 ° C) в течение 1 часа, имел предел текучести 9 тыс. Фунтов / кв. Дюйм (60 МПа). Меньше крупных зерен присутствовало в этом образце по сравнению с центральным образцом.
Другая причина перекристаллизации отжига
В дополнение к включению дополнительной холодной обработки, рекристаллизационный отжиг также используется в качестве конечного этапа обработки для получения металлического листа, пластины, проволоки или прутка с определенными механическими свойствами
Регулирование температуры и времени отжига, скорости нагрева до температуры отжига и количества холодной обработки перед отжигом важно для получения нужного размера зерна и, следовательно, требуемых механических свойств
Результаты и обсуждение
На рис. 1 (под этим блоком текста) приведены потенциодинамические кривые поляризации и графики Найквиста сплава Та. Из потенциодинамических поляризационных кривых (рис. 1, а) видно поведение поляризации деформированного образца намного больше похоже на более ранние результаты то есть анодное и катодное поведение Та.
Для деформированного образца существует точка перехода, при которой анодный наклон графика резко изменяется, и анодный ток слегка увеличивается с увеличением более положительного потенциала. Анодное растворение продолжается с постоянной скоростью. Однако поляризационные характеристики образцов отжига показывают разницу в том, что анодные токи постепенно увеличиваются с увеличением более положительного потенциала. Как для анодной, так и для катодной ветвей плотности тока отжиговых образцов намного меньше, чем у деформированных образцов.
Это указывает на то, что микроструктура влияет не только на анодное растворение, но также на катализ катодной реакции, а коррозионные характеристики определяются как анодной, так и катодной реакциями. Более того,На рис. 1, б представлен график для различных образцов в растворе H 2 SO 4 .
Существует только одна постоянная времени, и на поверхности электрода не образуются промежуточные продукты, такие как адсорбционный комплекс. В зависимости от формы графика была выбрана модель эквивалентной схемы для получения поляризационного сопротивления ( R p ), как показано на рисунке 1 б. R s — сопротивление испытательного раствора между электродом сравнения и рабочим электродом и элементом постоянной фазы (CPE), определяемое как Z = 1 / Y (jw) -n используется для объяснения неидеального емкостного отклика от интерфейса. Общепринято, что диаметр полукруга связан с R p пассивных пленок. Увеличение диаметра означает увеличение коррозионной стойкости. Потенциал коррозии ( E corr ) и плотность коррозионного тока ( i corr ) также были отмечены на графике.
Рис. 1
Электрохимические измерения ( а ) потенциодинамических кривых поляризации и ( б ) графиков .
- Значение E Corr является -0,16 В для деформированного образца.
- Тогда как значения E corrсоставляют -0,40 В и -0,45 В
для образца, отожженного при 1200 ° С в течение 10 минут, и образца, отожженного при 1350 ° С в течение 240 минут, соответственно.
Следовательно, E corr отожженных образцов является более отрицательным, чем у деформированного. Это указывает на то, что не только анодное растворение намного более блокировано, но и катодная активность намного ниже, что приводит к более низким скоростям коррозии при E corr . Я корр деформированного образца составляет 14 × 10 -8 А / см 2 . В то время как I Corr уменьшается до 7,5 × 10-8 А / см 2 для образца, отожженного при 1200 ° С в течение 10 мин, и дополнительно уменьшенного до 2,3 × 10 -8 А / см 2после отжига при 1350 ° С в течение 240 мин, что свидетельствует о повышении коррозионной стойкости после отжига. R р деформированного образца составляет 0,46 × 10 6 Ω см 2 .
При этом значения R p составляют 3,7 × 10 6 Ом см 2 и 7,3 × 10 6 Ом см 2 после отжига при 1200 ° С в течение 10 минут и при 1350 ° С в течение 240 минут, соответственно. Ясно ряд улучшенных коррозионностойких свойств, благодаря постепенному сдвигу E corrв сторону отрицательных значений и постепенного уменьшения I corr и увеличения R p .