Сплав манганин

Таблица удельных сопротивлений проводников

Материал проводника Удельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025… 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095… 0,1
0,1
0,103… 0,137
0,12
0,22
0,42
0,43… 0,51
0,5
0,6
0,94
1,05… 1,4
1,15… 1,35
1,2
1,3… 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм2. Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм2.

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм2.

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2.

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.


температурный коэффициент сопротивления

это изменение сопротивления проводника при его нагревании,
приходящееся на 1 Ом первоначального сопротивления и на 1° температуры,
обозначается буквой α.

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Сплав латуни

Латунь металл компонентный. Это означает, что чаще всего латунь идёт в сплавах с другими металлами. Для латуни главным легирующим элементом обычно считается цинк. Но при необходимости он может быть дополнен другими элементами: марганец, железо, свинец или никель. У латуни есть несколько сплавов, которые в разной мере популярны, но рассмотреть следует два самых востребованных и интересных в практическом плане: двойной и многокомпонентный, содержащий медь.

Для любого мастера, работающего с латунью, температура плавления этого сплава имеет определённый практический смысл. Осведомлённость в этой области сможет помочь в решении многих вероятных проблем.

Если знать температуру плавления латуни, то есть предел, при котором её можно расплавить, то появится возможность изготавливать различные конструктивные элементы, возможно и в домашних условиях.

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Алюминий

Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного — 2.7 Мг/м 3 . Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного

Весьма важно, что алюминий менее дефицитен, чем медь

Константан

Имеет белый цвет с характерным желтоватым оттеком. В состав входят: медь -59 %; никель – 39-41 %; марганец – 1-2 %. Температура плавления 1260 °С. Этот медно-никелевый сплав получил свое название благодаря основному свойству – термостабильности. Он имеет очень хорошие показатели электрического сопротивления при низком значении температурного коэффициента расширения. Сплав идет для изготовления проволоки для термопар, в производстве измерительных приборов, а также электронагревательных элементах, работающих при температурах до 400-500 градусов.

Проволока, изготовленная из константана, подвергается специальной термической обработке, в результате которой металл на поверхности образует тонкую окисную пленку. Благодаря этому изделие не нуждается в дополнительной лакировке или защитном покрытии. Константан очень пластичен. Это свойство позволяет применять его при сварке медно-никелевых сплавов.

Недостатком константана является его достаточно высокая ЭДС – около 43 мкВ. Это исключает использование проволоки и ленты из него в высокоточных измерительных приборах.

Применение

Широко применяется в измерительной технике для изготовления добавочных резисторов и шунтов (в составе электроизмерительных приборов или виде самостоятельных изделий). Из манганина изготавливают меры электрического сопротивления — например, магазины сопротивлений.

Существенное преимущество манганина в этих применениях перед константаном — манганин обладает очень малой термоЭДС в паре с медью (не более 1 мкВ/К), поэтому в приборах высокого класса точности, или приборах, предназначенных для измерения очень малых напряжений применяют только манганин. В то же время манганин, в отличие от константана, неустойчив против коррозии в атмосфере, содержащей пары кислот, аммиака, а также чувствителен к изменению влажности воздуха.

Практически нулевое значение ТКС манганин сохраняет до температур 70—80 °C. Для снижения ТКС и снижения изменения удельного электрического сопротивления во времени манганиновую проволоку подвергают отжигу при температурах 550—600 °C в вакууме с последующим медленным охлаждением. Такая проволока может сохранять свои электрические свойства при температурах до 200 °C. Изготовленные резисторы иногда дополнительно отжигаются при температуре 200 °C.

Манганин

Манганин имеет очень малое значение термоЭДС в паре с медью, высокую стабильность удельного сопротивления во времени, что позволяет широко использовать его при изготовлении резисторов и электроизмерительных приборов самых высоких классов точности.

Манганин ( как и другие сплавы) имеет свойство изменять свое сопротивление с течением времени. Основной причиной этого являются те механические напряжения, которые создаются в проволоке при намотке ее и приводят впоследствии к некоторым перегруппировкам молекул и изменению структуры материала. Для повышения стабильности изготовленных катушек сопротивления их подвергают искусственному старению, нагревая несколько раз до 150 С, что значительно уменьшает последующее изменение сопротивления в процессе эксплуатации. Для катушек сопротивлений с номинальным значением менее 100 ом, наматываемых из голой, неизолированной проволоки, в последнее время разработан более эффективный способ искусственного старения, заключающийся в весьма быстром нагреве уже намотанной катушки до температуры около 600 С кратковременным импульсом электрического тока.

Манганин – медный сплав, содержащий ( кроме меди) 11 0 – 13 / 0 Мп и 2 5 – 3 5 % Ni; используется для изготовления реостатов и катушек сопротивления в электротехнических приборах.

Манганин – сплав, содержащий 11 – 13 % марганца, 2 5 – 3 5 % никеля, остальное – медь с примесями кремния и железа.

Манганин – сплав меди 86 %, марганца 12 % и никеля 2 %, обладает высоким удельным сопротивлением и малым температурным коэффициентом ( примерно 0 6 10 – 5 1град), поэтому он применяется для изготовления шунтов, добавочных сопротивлений и образцовых катушек сопротивлений.

Манганин отличается характерным желтоватым оттенком.

Манганин представляет собой сплав меди, марганца и никеля.

Манганин и константан используются для эмалирования как в виде мягкой, так и в виде твердой проволоки. Нихромовые эмалированные провода выпускаются из проволоки, предварительно отожженной в водородной среде.

Манганин широко применяется для изготовления приборов электросопротивления с рабочей температурой до 100 С, а также для точных электроизмерительных приборов.

Манганин МНМц 3 – 12 отличается высоким электросопротивлением, малым температурным коэффициентом сопротивления и небольшой термоэлектродви-жущей силой в Ъаре с медью.

Манганин МНМц 3 – 12 отличается высоким электросопротивлением, малым температурным коэффициентом сопротивления и небольшой термоэлектродвижущей силой в паре с медью.

Технический манганин представляет собой сплав марганца, никеля и меди. Манганин после отжига при 400 С поддается прокатке и волочению; проволока имеет минимальный диаметр 0 02 мм. TKR 3 – 10 5 / град; термоэлектродвижущая сила в паре с медью близка к пулю: ет 1 мкв / град. Механическая обработка и различные деформации ( наклеп) приводят к увеличению удельного сопротивления и к снижению стабильности свойств. Так, усилия при нанесении изоляции на проволоку и ее намотке на катушку достаточны, чтобы в отожженном манганине появилось явление наклепа; поэтому для стабилизации свойств готовых образцовых сопротивлений ( секций) их подвергают вторичной термической обработке. Допустимая рабочая температура цля манганина может составлять 200 С, однако для образцовых сопротивлений рабочую температуру ограничивают 60 С, так как при более высоких температурах характеристики манганина несколько изменяются. Серебряный манганин, состоящий из марганца, никеля и серебра, имея примерно те же свойства, что и технический манганин, выдерживает рабочую температуру до 200 С без существенного изменения проводимости.

Манганин МНМц 3 – 12 отличается высоким электросопротивлением, малым температурным коэффициентом сопротивления и незначительной термоэлектродвижущей силой ь паре с медью.

Манганин МНМц 3 – 12 отличается высоким электросопротивлением, малым температурным коэффициентом сопротивления и незначительной термоэлектродвижущей силой в паре с медью.

Кривые относительных фазовых проницаемостеи а-система нефть – вода. б – система газ – нефть.

Основные характеристики

На такой показатель, как температура плавления латуни в первую очередь влияет её состав. Температура в разных случаях может иметь различные показатели, которые колеблются в диапазоне от восьмисот восьмидесяти градусов по Цельсию до девятисот пятидесяти. Конечно, возможно этот диапазон понизить. Если существует потребность в этом, то следует просто в состав сплава вводить больше цинка. Для обратного эффекта следует делать соответственно наоборот.

Обработка этого металла может осуществляться посредством сварки, но следует помнить, что в таком случае она может прокатываться.

Следует знать тот важный факт, что если не позаботиться о покрытии поверхности этого сплава дополнительной защитой, то впоследствии придётся столкнуться с почернением поверхности. Это связано с тем, что при контакте с воздухом она немного окисляется, вследствие чего и происходит лёгкое почернение.

Поверхность латуни достаточно легко поддаётся полировке. Для того чтобы выбрать способ плавления для этого металла следует, для начала, учесть его состав.

Следует помнить, что на латунный сплав весьма негативно влияют такие элементы, как свинец или висмут. Это связано с тем, что эти элементы значительно снижают свойства материала к деформации в условиях, когда он находится в состоянии нагрева.

Латунь является цветным металлом, но в то же время она обладает множеством особых характеристик, что свойственны только этому материалу. Металл обладает некоторыми преимуществами, которые напрямую влияют на популярность материала:

  1. Латунь имеет высокую устойчивость к процессам коррозии.
  2. Материал обладает довольно высокой степенью текучести, что является очень важным фактором при его плавлении.
  3. Можно отметить и высокие антифрикционные свойства этого металла, а также довольно низкую склонность к ликвации.

В принципе, можно отметить ещё много разных достоинств, которые приписываются латуни, но они не общие, а узконаправленные. Это означает, что в зависимости от марки, материал используется в различных промышленных сферах.

Латунь используется в таких важных областях, как автомобилестроение и машиностроение. Также из этого компонентного металла создают большое количество разнообразных изделий различного назначения.

Для того чтобы можно было осуществлять работу с таким материалом, нужно для начала знать все его физические свойства, что впоследствии окажет непосредственную помощь в обработке латуни в домашних условиях.

Технические особенности латуни

  • Температура плавления латуни — 880–950 градусов по Цельсию.
  • Удельная теплоёмкость этого металла — 0,377 кДж*кг — 1*К-1 при термическом воздействии в 20 градусов по Цельсию.
  • Плотность материала — 8300–8700 кг/метр кубический.
  • Удельное электрическое сопротивление (0,07–0,08)*6—10 Ом*м.

Применение и характеристики манганина

Изделия из этого сплава часто используют при создании электроизмерительных приборов. Так как учёные на первое место ставят точность, для них стабильный показатель удельного сопротивления крайне важен. В противном случае это может негативно повлиять на эксперимент.

Реостат – этот тот прибор, в состав которого входит манганиновая проволока, и подыскать ближайший аналог крайне непросто. Металл также задействован в конструкции шунтов. ТермоЭДС составляет не более 1 мкв/1 °C. Стоит отметить, что манганин подвержен коррозии, поэтому за ним нужен специальный уход. Мало того, необходимо всячески избегать попадания на поверхность кислот. Высокая влажность может губительно сказаться на металле. Максимальная рабочая температура составляет +70 – +80 градусов. После специальной термической обработки проволока сохраняет свои свойства при температуре до +200 °C.

Изделия, представленные у нас на сайте, изготовляются нашим заводом при помощи технологии холодной деформации. В ассортименте имеются проволоки круглого сечения. При индивидуальном заказе можно подобрать квадратную или шестиугольную форму. Помимо проволоки и сложных электротехнических приборов из сплава также изготовляют ленты толщиной до 0,08 мм и шириной до 270 мм, а также провода, в которых для большей надёжности используется дополнительная изоляция (материал — эмаль).

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector