Мальтийский механизм

Механизм – мальтийский крест

В § 52 3 нами были рассмотрены схемы механизмов мальтийских крестов и некоторые вопросы их кинематики. Мальтийские механизмы широко применяются в машинах-автоматах и приборах, когда необходимо воспроизведение движения, постоянного по направлению, но с периодической остановкой ведомого звена. Обычно при этом задается отношение k времени гд движения ведомого звена к времени tn его покоя, называемое коэффициентом времени работы механизма.

Коэффициент ускоренности ( д, является основной характеристикой механизма мальтийского креста в том случае, когда прорези на кресте расположены равномерно.

Поворот ведущего кривошипа этого механизма на угол ф соответствует механизму мальтийского креста внешнего зацепления, а поворот на угол ф – механизму внутреннего зацепления.

Для периодического поворота револьверной головки из позиции в позицию используется механизм мальтийского креста, который состоит из ведущего диска 8, закрепленного на кривошипном валу 23, мальтийского поводка 7 с шестью радиальными пазами а, установленного на конце оси револьверной головки /, и ролика ГО. При вращении кривошипного вала 23 ролик 10 входит в очередной паз мальтийского поводка 7 и поворачивает его на / г. часть оборота совместно с револьверной головкой.

Схема механизма мальтийского креста с внутренним зацеплением.| Схема кулисного механизма, заменяющего механизм мальтийского креста.

Если и периоды покоя и периоды движения заданы неравными, случается механизм неправильного мальтийского креста.

Схема механизма мальтий – Схема кулисного механизма, ского креста с внутренним зацеплением заменяющего механизм мальтийского.| Диаграммы угловой скорости и углового ускорения коромысла кулисного механизма, заменяющего механизмы мальтийских крестов с внешним и внутренним еа.

Если и периоды покоя и периоды движения заданы неравными, получается механизм неправильного мальтийского креста.

Схема кулачкового механизма с коромыслом.| Схема кулачкового механизма с поступательно движущимся толкателем.| Схема механизма, заменяющего.

На рис. 217 показано решение той же задачи непосредственно на схеме механизма мальтийского креста.

Поскольку узел ориентированного поворота фрезы, выполненного, например, на базе механизма мальтийских крестов, ведет подсчет циклов работы узла подачи бура, то после сверления на заданную глубину, при котором из одной кассеты будут использованы все составные патрубки полностью, происходит поворот корпуса 36, установленного на подшипниках 37 и 38 на заданный угол. После этого процесс сверления следующего канала продолжается аналогично вышеописанным циклам. По окончании сверления каждого участка канала на заданную глубину на пульт управления об этом поступает информация. Таким образом, после сверления необходимого количества каналов двигатель включают на реверс и гайки 20 и 21 захватываются винтами 39 и 40 и освобождают заякоривающие штифты 22 и 23, возвращая их в исходное положение. Далее перфоратор поднимается на поверхность.

Графики OK ( UK ( и Ек ек ( 0 Для механизмов мальтийских крестов.

На рис. 209 приведены кривые fiKcuKtf и екек ( 0 для кулисного механизма, соответствующие механизмам мальтийского креста внешнего и внутреннего зацеплений в предположении, что сов const. Первому соответствует участок АВ диаграммы, а второму-участки С А и BD. Анализ кривых показывает, что сйк достигает максимальных значений в середине интервалов перемещений.

Периодический поворот ( индексирование) стола производится от отдельного электродвигателя через червячную и цилиндрическую пары и механизм мальтийского креста.

Механизм динамического жсния прибора ПХП-2.

Виды планетарных редукторов

  1. Одноступенчатые.
  2. Многоступенчатые.

Первый вариант исполнения намного проще, характеризуется меньшими размерами и обеспечивает более широкие возможности по передаче крутящего момента. Создание нескольких ступеней определяет существенное увеличение размеров конструкции, а диапазон передаточных чисел уменьшается.

По показателю сложности планетарного редуктора выделяют два основных типа:

  1. Простые.
  2. Дифференциальные.

В зависимости от формы корпуса и применяемым внутри элементам выделяют следующие типы:

  1. Волновые.
  2. Конические.
  3. Червячные.
  4. Цилиндрические или колесного типа.

Их применение позволяет передавать вращение между пересекающимися, перекрещивающимися и параллельными валами. 

Количество лопастей


Мальтийский крест кинопроектора 23КПК

В подавляющем большинстве кинопроекторов применяется мальтийский механизм с четырёхлопастным крестом. Это обусловлено максимальным КПД при относительно низких ускорениях ведомого звена, важных с точки зрения износа перфорации. Четырёхлопастный мальтийский механизм обладает рабочим углом 90° — минимальным из всех возможных, не считая трёхлопастного, рабочий угол которого 60°. Но трёхлопастный крест развивает недопустимо высокие ускорения при транспортировке киноплёнки, делающие его непригодным в кинотехнике. Мальтийские механизмы с бо́льшим количеством лопастей имеют более низкий КПД, обладая большим рабочим углом. В кинопроекторах, оснащённых двухлопастным обтюратором с одной холостой лопастью от КПД скачкового механизма зависит полезный световой поток, попадающий на экран, поэтому четырёхлопастный мальтийский крест — наилучший компромисс. Работающий обтюратор такого кинопроектора уменьшает световой поток всего вдвое, имея коэффициент обтюрации 0,5.

Количество лопастей


Мальтийский крест кинопроектора 23КПК

В подавляющем большинстве кинопроекторов применяется мальтийский механизм с четырёхлопастным крестом. Это обусловлено максимальным КПД при относительно низких ускорениях ведомого звена, важных с точки зрения износа перфорации. Четырёхлопастный мальтийский механизм обладает рабочим углом 90° — минимальным из всех возможных, не считая трёхлопастного, рабочий угол которого 60°. Но трёхлопастный крест развивает недопустимо высокие ускорения при транспортировке киноплёнки, делающие его непригодным в кинотехнике. Мальтийские механизмы с бо́льшим количеством лопастей имеют более низкий КПД, обладая большим рабочим углом. В кинопроекторах, оснащённых двухлопастным обтюратором с одной холостой лопастью от КПД скачкового механизма зависит полезный световой поток, попадающий на экран, поэтому четырёхлопастный мальтийский крест — наилучший компромисс. Работающий обтюратор такого кинопроектора уменьшает световой поток всего вдвое, имея коэффициент обтюрации 0,5.

Требования безопасности

При проектировании и монтаже рычажного механизма учитываются требований безопасности. Они во многом зависят от области применения устройства, а также особенностей самого механизма.

Среди особенностей этого момента можно отметить следующее:

  1. При изготовлении должен подбираться материал, который будет соответствовать всем требованиям. Примером можно назвать высокую коррозионную стойкость. При проектировании указывается то, какой именно материал должен применяться при изготовлении устройства. Часто отдается предпочтение углеродистой стали и легированным сплавам. Некоторые элементы могут быть изготовлены из уплотнительных и других материалов, все зависит то конкретного случая.
  2. При проектировании учитывается то, каким образом происходит перераспределение нагрузки. Это связано с тем, что в некоторых местах она будет критической.
  3. Под активным элементом при подъеме тяжелых объектов не должно находится людей, другого оборудования, а также частей самого рычажного механизма. Это связано с высокой вероятностью падения переносимого груза.
  4. Перед непосредственным применением оборудования следует проводить визуальный осмотр, который позволяет определить наличие или отсутствие повреждений. Кроме этого, должно проводится периодическое обслуживание. Даже незначительный дефект может стать причиной существенного снижения прочности рычажного механизма. Периодическое обслуживание позволяет существенно продлить срок службы устройства.
  5. Запрещается применять механизм не по предназначению. Перед каждым его использованием проверяется надежность крепления. Нагрузка должна оказываться на конструкцию соответствующим образом, так как в противном случае происходит неправильное перераспределение силы. Именно поэтому при проектировании указывается то, каким образом устройство должно устанавливаться и как использоваться.
  6. При применении учитывается то, на какую максимальную нагрузку рассчитано оборудование. Слишком высокий показатель может стать причиной, по которой происходит повреждение основных элементов. При проектировании учитывается то, какая нагрузка может оказываться на конструкцию.

Как правило, соответствующее руководство по применению устройства составляется непосредственно на месте его эксплуатации в соответствии с установленными нормами. Это связано с тем, что рычажные механизмы получили весьма широкое распространение, могут устанавливаться в качестве составного узла другого оборудования.

При этом узел оборудован тремя важными независимыми системами:

  1. Гидравлическая. Эта часть устанавливается в большинстве случаев для передачи усилия. Гидравлика получила весьма широкое распространение, так как она предназначена для непосредственной передачи усилия. Гидравлическая часть основана на подаче специальной жидкости, при помощи которой проводится передача усилия. Гидравлика несет с собой опасность по причине того, что подвижный элементы могут передавать усилие. Поэтому все основные элементы должны быть защищены от воздействия окружающей среды, для чего проводится установка различных кожухов.
  2. Механическая. Механика отвечает за непосредственную передачу усилия и достижения других целей. Неправильная работа устройства может стать причиной повреждения и деформации. Механика также защищается специальными кожухами, так как попадание посторонних элементов запрещается.
  3. Электрическая. Для управления механизмом проводится установка электрической части. Она должна быть защищена от воздействия окружающей среды, так как даже незначительное механическое воздействие может стать причиной повреждения магистрали электроснабжения.

Опасность с собой несет и электрическая часть, которая состоит из конечных выключателей. Схема подключения предусматривает использование как минимум двух выключателей, устройство должно обесточиваться в случае выхода из строя одного из них.

Механическая система защиты действует путем прерывания подачи масла в гидравлический цилиндр. При этом проводится слив масла с цилиндра в общую емкость. Подобная система срабатывает даже при незначительном повреждении устройства.

Классификация рычажных механизмов

Все рычажные механизмы классифицируются по достаточно большому количеству различных признаков. При этом общими свойствами можно назвать высокий показатель КПД и повышенную нагрузочную способность, простоту функционирования. Простейшие рычажные механизмы встречаются в самых различных областях промышленности. Основная классификация проводится по принципу действия:

  1. Четырехзвенники.
  2. Кривошипно-шатунный.
  3. Кулисные механизмы.

Приведенные примеры могут устанавливаться для достижения самых различных целей.

Большое распространение получил коленно-рычажный механизм по причине простоты конструкции и длительного эксплуатационного срока.

Количество лопастей


Мальтийский крест кинопроектора 23КПК

В подавляющем большинстве кинопроекторов применяется мальтийский механизм с четырёхлопастным крестом. Это обусловлено максимальным КПД при относительно низких ускорениях ведомого звена, важных с точки зрения износа перфорации. Четырёхлопастный мальтийский механизм обладает рабочим углом 90° — минимальным из всех возможных, не считая трёхлопастного, рабочий угол которого 60°. Но трёхлопастный крест развивает недопустимо высокие ускорения при транспортировке киноплёнки, делающие его непригодным в кинотехнике. Мальтийские механизмы с бо́льшим количеством лопастей имеют более низкий КПД, обладая большим рабочим углом. В кинопроекторах, оснащённых двухлопастным обтюратором с одной холостой лопастью от КПД скачкового механизма зависит полезный световой поток, попадающий на экран, поэтому четырёхлопастный мальтийский крест — наилучший компромисс. Работающий обтюратор такого кинопроектора уменьшает световой поток всего вдвое, имея коэффициент обтюрации 0,5.

Возможные проблемы и важные особенности

При работе рассматриваемого механизма велика вероятность возникновения самых различных проблем. Примером можно назвать проскок положения максимума и многие другие. Для предотвращения проблем следует:

  1. Проводить своевременное обслуживание.
  2. Соблюдать технику безопасности.
  3. Выполнять периодическую замену различных деталей.

Также следует уделять внимание тому, какой период смазки коленно-рычажного механизма. Только при своевременной подаче смазывающего вещества можно существенно снизить степень износа основных элементов

Стоит учитывать, что для рассматриваемого рычажного механизма требуется специальная жидкость, обладающая особыми свойствами.

Проскок положения максимума

Как выше было указано, довольно большое распространение получил случай проскока положения максимума. Среди особенностей этого момента отметим следующее:

  1. На момент, когда все три шарнира находится на одной линии оказывается наибольшее усилие смыкания.
  2. В данном положении шток вытянут максимально, неосторожные действия могут стать причиной повреждения конструкции.
  3. Если конструкция была настроено неправильно, то серьги проскакивают положение крайней точки. Подобное явление становится причиной, по которой шток не может вернуться в первоначальное положение.

На момент максимального перемещения штока оказывается сильное давление, за счет чего возникает вероятность деформации основных элементов. Именно поэтому проскок положения максимума приводит к механическому повреждения станка.

Оверлок

Проблема может возникать также в случае неправильной регулировки рычажного механизма. Примером можно назвать случай, когда усилия цилиндра недостаточно для открытия основных элементов. Особенности проблемы следующие:

  1. На колонны в большинстве случаев надеваются ленточные нагреватели.
  2. За счет нагрева до определенной температуры происходит удлинение колонны, за счет чего снижается степень оказываемой нагрузки.

В подобном случае запрещается открывать форму до полного открытия колонн. Это связано с тем, что возникающая нагрузка может стать причиной деформации направляющих элементов. Если они потеряют свою форму, то в дальнейшем существенно усложниться ход подвижных элементов.

Рабочий угол

Одной из главных характеристик мальтийского механизма (как и других разновидностей скачковых механизмов) является рабочий угол. Это величина, характеризующая угол поворота ведущего вала, за который происходит перемещение ведомого (киноплёнки). Считая, что полный цикл работы механизма проходит за поворот вала на 360°, можно вычислить угол, при котором киноплёнка остаётся неподвижной. У мальтийского механизма с четырёхлопастным крестом рабочий угол составляет 90°, что означает угол покоя в 270°. Это соответствует КПД в 75 %. Таким образом, чем меньше рабочий угол, тем выше КПД. Для повышения КПД в некоторых кинопроекторах применяются мальтийские механизмы с ускорителями. Такие механизмы называются кулисно-мальтийскими и их действие основано на неравномерной угловой скорости ведущего вала, за счёт которой время перемещения киноплёнки уменьшается по отношению к полному циклу.

Принципы работы планетарных коробок передач

Изменение передачи зависит от конфигурации размещения функциональных узлов. Значение будет иметь подвижность элемента и направления крутящего момента. Один из трех компонентов (водило, сателлиты, солнечная шестерня) фиксируется в неподвижном положении, а два других вращаются. Для блокировки элементов планетарной коробки передач принцип работы механизма предусматривает подключение системы ленточных тормозов и муфт. Разве что в дифференциальных устройствах с коническими шестернями тормоза и блокировочные муфты отсутствуют.

Понижающая передача может активизироваться по двум схемам. В первом варианте реализуется следующий принцип: останавливается эпицикл, на фоне чего рабочий момент от силового агрегата переправляется на базу солнечной шестерни и убирается с водила. В итоге интенсивность вращения вала будет понижаться, а солнечная шестерня прибавит в частоте работы. В альтернативной схеме блокируется солнечная шестерня устройства, а вращение передается от водила к эпициклу. Результат аналогичный, но с небольшим отличием. Дело в том, что передаточное число в данной рабочей модели будет стремиться к единице.

В процессе повышения передачи тоже может реализовываться несколько рабочих моделей, причем для одной и той же планетарной коробки передач. Принцип действия в простейшей схеме следующий: блокируется эпицикл, а момент вращения переносится с центральной солнечной шестерни и транслируется на сателлиты и водило. В таком режиме механизм работает как повышающий редуктор. В другой конфигурации будет блокироваться шестерня, а момент переправляется от коронной шестерни на водило. Также принцип действия схож с первым вариантом, но есть разница в частоте вращения. При включении заднего хода момент кручения снимется с эпицикла и будет передаваться на солнечную шестерню. При этом водило должно находиться в неподвижном состоянии.

Структурный анализ механизма

Сегодня в интернете можно встретить чертеж мальтийского механизма, который может применяться изготовления конструкции своими руками. Ключевыми особенностями назовем:

  1. Рабочий угол.
  2. Количество лопастей.
  3. Тип применяемого материала.
  4. Расположение относительно друг друга.
  5. Диаметр окружности, описывающий крест и барабан.

Простейший вариант исполнения представлен двумя подвижными звеньями и тремя кинематическими парами. За счет этого обеспечивается равномерность движения. При проектировании приходится проводить достаточно сложно расчеты, которые под силу исключительно профессиональному инженеру.

Особенности работы двунаправленных механизмов

Многие храповые механизмы характеризуются тем, что вращение колеса или рейки проводится только в одном направлении. Также стали производить варианты исполнения, которые могут вращаться в обоих направлениях. Ключевыми моментами можно назвать следующее:

  1. Вращение реализуется влево и направо. Именно этот момент существенно повышает функциональность устройства.
  2. Форма зубцов прямоугольная. Только за счет этого обеспечивается равномерное вращение колеса в обоих направлениях.
  3. Ключевая особенность также заключается в том, каким образом работает фиксирующая собачка. Она на момент вращения основного элемента не перескакивает, а приподнимается. За счет этого устройство становится более функциональным, но при этом и менее надежным.

Область применения подобного элемента сегодня получил весьма широкое распространение

При его изготовлении могут применяться самые различные материалы, в большинстве случаев уделяется внимание вариантам исполнения с повышенной коррозионной стойкостью

Кулачковые механизмы

Устройства применяются при необходимости преобразования вращения ведущего вала в линейное перемещение небольшой амплитуды. Основные элементы механизма следующие:

  • ведущий вал;
  • закрепленный на нем (или являющийся его частью);
  • фасонный диск с выступом;
  • толкатель, движущий в направляющих, обеспечивающих линейность его движения.

Фасонный диск (он называется также кулачком) – это активный элемент кинематической пары. Исполнительным элементом служит толкатель. Иногда движение передается через качающиеся на параллельном валу коромысло.

Одним из основных параметров у механизмов с толкателем является эксцентриситет — ось толкателя смещается относительно оси кулачка.

Принцип работы кулачкового механизма прост:

при вращении кулачка в плоскости толкателя он поворачивается своим сечением с большим радиусом, оказывая давление на толкатель и вынуждая его к линейному движению. Это перемещение происходит до тех пор, пока не будет достигнута вершина кулачка. После его прохождения давление на шток начинает ослабевать вплоть до достижения минимального радиуса диска. Шток возвращается обратно под действием пружины. Цикл повторяется.

Особенностью кулачковой пары является ее необратимость. Кривошипный механизм может преобразовывать движение в обе стороны. Так, в бензиновом или дизельном двигателе во время рабочего хода продольный ход поршня преобразуется во вращение коленвала. Во время такта выпуска накопленная инерция вращения маховика вращает коленвал, и кривошипный механизм превращает его в обратный ход поршня, вытесняющего остатки продуктов сгорания рабочей смеси из цилиндра.

Кулачковая пара такой обратимости не имеет, поскольку отсутствует жесткая связь между элементами. Толкатель совершает обратное перемещение под действием возвратной пружины.

Самым широко распространенным примером кулачкового механизма служит распределительный механизм в двигателе внутреннего сгорания. Кулачки распредвала напрямую или через коромысла открывают в определенном порядке клапаны цилиндров. Закрываются они возвратными пружинами.

Чтобы спроектировать действующее устройство, необходимо провести ряд расчетов, для синтеза кулачкового механизма построить передаточную диаграмму.

Кинематика мальтийского механизма

Прежде чем проводить расчеты следует уделить внимание кинематическим особенностям устройства. В качестве основы применяется треугольник с несколькими вершинами, а также цевки, которая формируется при входе в паз и выходе из него

Используя кинематику можно провести следующие расчеты:

Найти углы поворота на первой и второй фазе.
Углы и стороны треугольника также считаются важной информацией.
Угловую скорость и угловое ускорение.

При анализе вращения диска уделяется внимание теореме сложения скоростей и ускорения центра цевки при вращении с равномерной скоростью. Алгоритм расчетов предусматривает применение специальных таблиц

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий

Adblock
detector