Линейчатые поверхности

Линейчатая поверхность – второе – порядок

Линейчатая поверхность второго порядка в общем случае вполне определяется тремя прямыми; поэтому возьмем сначала в качестве исходной поверхности линейчатую поверхность. Заданная прямолинейная образующая и две близких образующих определяют квадрику, имеющую предел L, когда две последние образующие стремятся к заданной. Вторая система прямолинейных образующих квадрики L состоит из прямых, встречающих три бесконечно близких образующих исходной поверхности.

Выше были рассмотрены линейчатые поверхности второго порядка: цилиндр, конус, гиперболический параболоид и однополостныи гиперболоид. Теперь рассмотрим остальные поверхности второго порядка, нелинейчатые: эллипсоид, эллиптический параболоид и двуполостный гиперболоид.

Выше были рассмотрены линейчатые поверхности второго порядка: цилиндр, конус, гиперболический параболоид и однополостный гиперболоид. Теперь рассмотрим остальные поверхности второго порядка, нелинейчатые: эллипсоид, эллиптический параболоид и двуполостный гиперболоид.

Возвращаясь к вопросу об образующих линейчатой поверхности второго порядка, можем показать, что любые две образующие одной и той же серии могут быть приняты за оси проективных пучков плоскостей, определяющих данную линейчатую поверхность.

С точки зрения аффинных свойств линейчатых поверхностей второго порядка последние могут быть разбиты на два класса. Те поверхности, для которых несобственная плоскость является секущей, называются однополости ы ми гиперболоидами ( черт. Те же поверхности, которые касаются несобственной плоскости, называются гиперболическими параболоидами.

Таким образом, получили известное свойство линейчатых поверхностей второго порядка: линейчатая поверхность второго порядка содержит два семейства действительных прямолинейных образующих, при этом образующие одного семейства между собой i e пересекаются, но каждая образующая одного семейства пересекает нее образующие другого семейства. Последняя часть утверждения справедлива, чти Р плоскости 1 каждая прям.

Первые три варианта возможны лишь при пересечении линейчатых поверхностей второго порядка, так как в состав их линии пересечения входят прямые. Первый вариант получается, если пересекающиеся поверхности второго порядка имеют одну общую образующую.

Благодаря большому принципу двойственности возможно изучение так называемых линейчатых поверхностей второго порядка посредством изучения плоских пучков второго порядка. Действительно, пучки второго порядка построены на проективных точечных рядах. Но каждый ряд точек на прямой соответствует пучку плоскостей. Соответственные плоскости двух проективных пучков пересекаются по прямым, которые и являются образующими линейчатых поверхностей.

Но оказывается, что кроме конусов и цилиндров линейчатыми поверхностями второго порядка являются еще однополостный гиперболоид и гиперболический параболоид. Этот факт на взгляд не очевиден, однако легко доказывается алгебраически.

Но оказывается, что кроме конусов и цилиндров линейчатыми поверхностями второго порядка являются еще однополостный гиперболоид и гиперболический параболоид. Этот факт на взгляд не очевиден, однако легко доказывается алгебраически.

Кривая с3 может быть получена в результате пересечения двух линейчатых поверхностей второго порядка с общей образующей, если вдоль этой образующей они не касаются.

Мы уже видели, что произвольная плоскость со пересекает линейчатую поверхность второго порядка по кривой второго порядка. Следовательно, кривая второго порядка распадается в этом случае на пару прямых. Плоскость со называется в этом случае касательной плоскостью.

Следовательно, имеем два проективных пучка плоскостей, которые образуют линейчатую поверхность второго порядка.

Таким образом, получили известное свойство линейчатых поверхностей второго порядка: линейчатая поверхность второго порядка содержит два семейства действительных прямолинейных образующих, при этом образующие одного семейства между собой i e пересекаются, но каждая образующая одного семейства пересекает нее обра зующие другого семейства. Последняя часть утверждения справедлива ночо-му, чти Р плоскости 1 каждая прям.

Однако это не означает, что однополостными гиперболоидами и гиперболическими параболоидами исчерпываются все линейчатые поверхности второго порядка. Линейчатые поверхности второго порядка, не являющиеся ни гиперболоидами, ни параболоидами, мы изучим в следующих пунктах.

Пересечение цилиндра плоскостью

Пусть плоскость сечения γ – фронтально-проецирующая

  1. Если плоскость сечения γ параллельна оси цилиндра, то она пересекает цилиндр по четырехугольнику.
  2. Если плоскость сечения γ перпендикулярна оси цилиндра, то она пересекает цилиндр по окружности.
  3. Если плоскость сечения γ не параллельна и не перпендикулярна оси цилиндра в сечении эллипс.

Рассмотрим алгоритм построения сечения – эллипс:

Пересечение цилиндра плоскостью

  1. Находим и строим характерные точки (точки, не требующие дополнительных построений) – в нашем случае, точки принадлежащие крайним образующим – 1, 3, 5, 7. Одновременно с этим, данные точки определяют величину большой и малой оси эллипса.
  2. Для построения участка эллипса необходимо построить не менее 5-ти точек (так как лекальная кривая второго порядка определяется как минимум пятью точками). Для построения точек 2, 4, 6, 8 возьмем на π1 произвольно расположенные образующие цилиндра, которые проецируются на данную плоскость проекции в точки.
  3. Построим вторые проекции данных образующих. Из точек пересечения вторых проекций образующих с проекцией плоскости сечения γ проводим линии связи к π3. Для построения третьей проекции, например, точки 6 измеряем расстояние Δ1 и откладываем его по соответствующей линии связи на π3. Симметрично ей, относительно оси вращения, строим точку 4. Аналогично строятся другие точки.

Поверхности вращения

Поверхностями вращения называются поверхности, полученные вращением образующей вокруг неподвижной оси (Рисунок 7.5).

Цилиндрическая и коническая поверхности бесконечны (т.к. бесконечны образующие); сферическая, торовая поверхности — конечны.

Сферическая поверхность – частный случай торовой поверхности. При вращении окружности вокруг осей б, в, г получим торовую поверхность, а вокруг оси а – сферическую.

Образование поверхностей вращения

Элементы поверхности вращения

Каждая точка образующей линии при вращении вокруг оси описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения. Эти окружности называются параллелями.

Наименьшая параллель называется горлом, наибольшая – экватором.

Линия пересечения поверхности вращения плоскостью, проходящей через ось, называется меридианом.

Линия пересечения поверхности вращения плоскостью, проходящая через ось, параллельно фронтальной плоскости проекций, называется главным меридианом.

Применение и история складывающихся поверхностей


Развивающееся соединение двух эллипсов и его развитие

Детерминантное условие для развертывающихся поверхностей используется для определения численно складываемых связей между пространственными кривыми (директрисами). Схема показывает развивающуюся связь между двумя эллипсами, содержащимися в разных плоскостях (одна горизонтальная, другая вертикальная), и ее развитие.

Впечатление об использовании развертываемых поверхностей в автоматизированном проектировании ( САПР ) дается в интерактивном проектировании развертываемых поверхностей.

Историческое исследование по развёртывающемуся можно найти в развёртывающемся: их истории и применение

Определение и параметрическое представление

Линейчатая поверхность, образованная двумя кривыми Безье как направляющими (красный, зеленый)

Двумерное называется линейчатой ​​поверхностью , если оно представляет собой однопараметрического семейства прямых. Линии этого семейства являются образующими линейчатой ​​поверхности.

Линейчатая поверхность может быть описана параметрическим представлением вида

(CR) .Икс(ты,v)знак равноc(ты)+vр(ты) , v∈р ,{\ displaystyle \ quad \ mathbf {x} (u, v) = {\ color {красный} \ mathbf {c} (u)} + v \; {\ color {blue} \ mathbf {r} (u)} \, \ v \ in \ mathbb {R} \,}

Любая кривая с фиксированным параметром является образующей (линией), а кривая – директрисой представления. Векторы описывают направления генераторов.
v↦Икс(ты,v){\ Displaystyle \; v \ mapsto \ mathbf {x} (u_ {0}, v) \;}тызнак равноты{\ displaystyle u = u_ {0}}ты↦c(ты){\ Displaystyle \; и \ mapsto \ mathbf {c} (и) \;}р(ты)≠{\ Displaystyle \; \ mathbf {r} (и) \ neq {\ bf {0 \;}}}

Директриса может свернуться в точку (в случае конуса см. Пример ниже).

В качестве альтернативы линейчатая поверхность (CR) может быть описана как

(CD) Икс(ты,v)знак равно(1-v)c(ты)+vd(ты) {\ displaystyle \ quad \ mathbf {x} (u, v) = (1-v) \; {\ color {красный} \ mathbf {c} (u)} + v \; {\ color {зеленый} \ mathbf {d} (u)} \}

со второй директрисой .
d(ты)знак равноc(ты)+р(ты){\ Displaystyle \; \ mathbf {d} (u) = \ mathbf {c} (u) + \ mathbf {r} (u) \;}

В качестве альтернативы можно начать с двух непересекающихся кривых в качестве директрис и получить по (CD) линейчатую поверхность с направлениями линийc(ты),d(ты){\ Displaystyle \ mathbf {с} (и), \ mathbf {d} (и)}р(ты)знак равноd(ты)-c(ты) .{\ Displaystyle \; \ mathbf {r} (u) = \ mathbf {d} (u) – \ mathbf {c} (u) \.}

Для создания линейчатой ​​поверхности двумя директрисами (или одной директрисой и векторами направлений линий) существенна не только геометрическая форма этих кривых, но и их специальные параметрические представления влияют на форму линейчатой ​​поверхности.

Для теоретических исследований более выгодно представление (CR) , поскольку параметр появляется только один раз.
v{\ displaystyle v}

Неразвертывающиеся или косые поверхности

Их возникновение часто обусловлено передвижением прямолинейной образующей вдоль траектории, сформированной тремя направляющими. Они конкретно определяют закон перемещения и бывают прямыми или кривыми. Есть частные случаи, когда траектория движения определяется:

  • двумя направляющими и произвольной плоскостью;
  • направляющими произвольной формы и плоскостью параллелизма (например, область проекции).

Направляющая плоскость замещает одну из линий траектории. С ней движущаяся прямая составляет постоянный угол.

Примеры таких объектов: цилиндроид, коноид, гиперболический параболоид. Их основные характеристики приведены в таблице.

Вид Определители

(наряду с плоскостью параллелизма)

Характеристика Некоторые области применения
Цилиндроид 2 кривые направляющие Изобразить образующие на комплексных чертежах можно так:

1.Параллельно параллелизму провести серию плоскостей.

2.Определить точки, в которых кривые направляющие цилиндроида пересекаются с плоскостями.

Если за параллелизм принять одну из плоскостей уровня, что облегчает построение, то линии будут соответствовать линиям уровня.

Проектирование габаритных, большого диаметра, воздуховодов
Коноид 2 направляющие:

·        криволинейная;

·        прямолинейная

1.   Особый случай цилиндроида.

2.   Прямой коноид имеет направляющую прямолинейную, расположенную под прямым углом к области параллелизма.

Гидротехническое строительство, при конструировании опор мостов
Параболоид гиперболический (синонимично понятию косой плоскости) 2 пересекающиеся прямые направляющие 1.    Изображается как несколько прямых согласно закону: образующая должна пересекать направляющие и проходить параллельно установленной области параллелизма.

2.    При пересечении определенными плоскостями в сечениях получаются гиперболы и параболы.

При разработке конструкций гидротехнических сооружений, дорог, откосов, шлюзов, каналов, крыльев ветряков

Их моделирование, математическое, геометрическое описание позволяют проектировать различные тела и конструкции в машиностроении, архитектуре. Современные программы компьютерного проектирования, например КОМПАС 3D, облегчают и автоматизируют процесс моделирования таких объектов.

Линейчатые поверхности Образование поверхностей

Линейчатой поверхностью называется поверхность, образованная перемещением прямолинейной образующей по одной или более направляющим

Цилиндрическая поверхность m (m; S ) S // Цилиндрическая поверхность образуется движением прямой (образующей) по некоторой кривой m параллельно самой себе или имеющей постоянное направление S

i m ( i, m; i ) Коническая поверхность Коническая поверхность – образуется движением прямой линии (образующей) по некоторой кривой линии m и имеющей неподвижную точку S S

Торсовая поверхность m m – ребро возврата ( m) Торсовая поверхность образуется движением прямой, касающейся во всех своих положениях некоторой пространственной направляющей кривой m, называемой ребром возврата

Однополостный гиперболоид

Многогранные поверхности – это поверхности, образованные частями (отсеками) пересекающихся плоскостей Многогранником называется тело, ограниченное многогранной поверхностью, состоящей из плоских многоугольников Отсеки плоскостей называются гранями, а линии их пересечения – ребрами Точки пересечения ребер называются вершинами

S m S m Пирамидальная поверхность S m Пирамида m – замкнутый контур Если направляющая m ломаная, а все образующие пересекаются в одной точке, такая поверхность называется пирамидальной Поверхность с замкнутой ломаной направляющей (m), общей точкой пересечения образующих ребер и граней называется пирамидой

Принадлежность точки поверхности

S А1А1 С1С1 В1В1 S2S2 X 1,2 S1S1 А2А2 С2С2 В2В2 Задача Построить недостающую проекцию точки N N2N2 N1N1

m S Призматическая поверхность m S Призма Если все образующие поверхности параллельны – поверхность называется призматической Поверхность с замкнутой ломаной направляющей (m) (основанием) и взаимно параллельными ребрами – призма

Проецирующая призма А В С С1С1 В1В1 А1А1 k2k2 k1k1 f1f1 g1g1 g2g2 f2f2 X 1,2 Если ребра призмы перпендикулярны основанию, гранник называется проецирующей призмой

Поверхности Каталана

0 m1m1 n1n1 1 1 n m n1n1 m1m1 2 m2m2 n2n2 Линейчатые поверхности с двумя направляющими (поверхности Каталана) П 2 (m,n,; П 2 ); Цилиндроид

Поверхность с плоскостью параллелизма и двумя скрещивающимися направляющими называется гиперболическим параболоидом, или косой плоскостью Гипар

m2m2 n2n2 n1n1 m1m1 Задача Построить каркас и очерк гипара, заданного определителем (m, n, П 2 ) I21I2 2I22I2 3I23I2 4I24I2 5I25I2 6I26I2 7I27I2 8I28I I21I2 2I22I2 3I23I2 4I24I2 5I25I2 6I26I2 7I27I2 8I28I2 // парабола ll 1 n m ; 1 1 ll П 2 Определить видимость очерковых линий

Винтовой поверхностью называют поверхность, образованную винтовым движением образующей Винтовым движением называют движение, при котором каждая точка А образующей вращается вокруг неподвижной оси i и одновременно перемещается поступательно вдоль этой оси Винтовая поверхность

n2n2 n1n1 гелиса А1А1 В1В1 ί1ί1 ί2ί2 Задача Построить каркас и очерк прямого геликоида А2А2 В2В (Прямой винтовой коноид) (n, i)

Задача А2А2 А1А1 В1В1 В2В2 i2i2 i1i1 Построить очерк однополостного гиперболоида вращения Однополостный гиперболоид вращения

Пересечение прямой с поверхностью конуса

Пусть задан прямой круговой конус и прямая общего положения m. Найти точки «входа» и «выхода» прямой с поверхностью конуса.

  1. Через прямую m проводим вспомогательную секущую плоскость σ, дающую в сечении наиболее простую фигуру.
  2. Применение в качестве вспомогательной секущей плоскости проецирующей плоскости в данном случае нецелесообразно, так как в сечении получится кривая второго порядка, которую нужно строить по точкам.

Наиболее простая фигура – треугольник. Для этого секущая плоскость σ должна пройти через вершину S. Плоскость зададим с помощью двух пересекающихся прямых σ=SM∩MN или, что, то же самое,  (σ=SM∩m).

  1. Возьмем на прямой m точку А и соединим её с вершиной. Прямая SA пересечёт плоскость основания в точке М.
  2. Построим горизонтальные проекции этих объектов.
  3. Продлим фронтальную проекцию прямой m до пересечения с плоскостью основания в точке N.

Построение точек пересечения прямой с поверхностью конуса

  1. Построим её горизонтальную проекцию.
  2. Соединим точки M1N1, на пересечении с окружностью основания получим точки 1 и 2.
  3. Строим треугольник сечения конуса плоскостью σ, соединив точки 1 и 2 с вершиной S.
  4. На пересечении образующих 1-S и 2-S с прямой m получим искомые точки K и L.
  5. Определим видимость прямой относительно поверхности конуса.

На анимации ниже представлена последовательность построения точек пересечения прямой с поверхностью конуса.

Интерактивная модель
Пересечение прямой с конической поверхностью
Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector