Карбид вольфрама

Получение[править | править код]

Карбид вольфрама можно получить одним из следующих способов.

Непосредственным насыщением вольфрама углеродом

В основе процесса получения карбида вольфрама лежит прямая реакция:

W+C→WC{\displaystyle {\mathsf {W+C\rightarrow WC}}}

Образование WC происходит с образованием на поверхности частиц вольфрама монокарбида вольфрама, из которого внутрь частицы диффундирует углерод и образует ниже лежащий слой состава W2C.

При получении WC используют порошок вольфрама, восстановленный из его оксида, и сажу. Взятые в необходимом соотношении порошкообразные вещества смешивают, брикетируют или насыпают с утрамбовкой в графитовые контейнеры и помещают в печь. Для защиты порошка от окисления процесс синтеза ведут в среде водорода, который взаимодействуя с углеродом при температуре от 1300 °C образует ацетилен. Образование карбида вольфрама идёт в основном через газовую фазу за счёт углерода, содержащегося в газах. Протекают следующие реакции карбидизации:

2C+H2→C2H2{\displaystyle {\mathsf {2C+H_{2}\rightarrow C_{2}H_{2}}}}
2W+C2H2→2WC+H2{\displaystyle {\mathsf {2W+C_{2}H_{2}\rightarrow 2WC+H_{2}}}}

При наличии в среде оксида углерода процесс идёт по реакции

C+CO2→2CO{\displaystyle {\mathsf {C+CO_{2}\rightarrow 2CO}}}
2CO+W→WC+CO2{\displaystyle {\mathsf {2CO+W\rightarrow WC+CO_{2}}}}

Обычно процесс получения карбида вольфрама ведут при температуре 1300−1350 °C для мелкозернистых порошков вольфрама и 1600 °C для крупнозернистых, а время выдержки составляет от 1 до 2 часов. Полученные слегка спёкшиеся блоки карбида вольфрама измельчают и просеивают через сита.

Восстановлением оксида вольфрама углеродом с последующей карбидизацией
Этот метод в отличие от вышеописанного совмещает процесс восстановления и карбидизации вольфрама, при этом в шихту добавляют недостающее количество сажи для образования карбида. Восстановление оксида вольфрама WO3 происходит через газовую фазу в среде CO и водорода.
Восстановлением соединений вольфрама с последующей карбидизацией
Ещё одним способом получения карбида вольфрама является нагрев смеси вольфрамовой кислоты, вольфрамового ангидрида (WO3) или паравольфрамата аммония ((NH4)10·[H2W12O42xH2O) в среде водорода и метана при температуре 850−1000 °C.
Осаждением из газовой фазы
Получение карбида вольфрама из газовой фазы основано на разложении карбонила вольфрама при температуре 1000 °C.
Электролизом расплавленных солей
Электролиз смеси расплавленных бората натрия, карбоната натрия, фторида лития и вольфрамового ангидрида позволяет получить карбид вольфрама.
Монокристаллы карбида вольфрама
Монокристаллы WC могут быть получены выращиванием из расплава. Для этого смесь составом Co−40 %WC плавят в тигле из оксида алюминия при температуре 1600 °C и после гомогенизации расплава температуру снижают до 1500 °C со скоростью 1−3  °C/мин и выдерживают при этой температуре в течение 12 часов. После чего образец охлаждают и растворяют кобальтовую матрицу в кипящей соляной кислоте. Также может быть использован метод Чохральского для выращивания больших монокристаллов (до 1 см).

Нанесение защитного слоя на деталь

Вследствие описанных выше факторов,  при покрытии карбидами вольфрама поверхности деталей возрастают не только их износостойкость, но также стойкость против эрозии и окалины. Фактор хрупкости снимается за счёт чрезвычайно малой толщины наносимого карбидсодержащего слоя, который в большинстве случаев не превышает десятков микрон. Такой способ применения карбидов вольфрама более целесообразен: наличие пластичной подложки основного металла снижает чувствительность поверхности от вредного воздействия циклически возникающих рабочих нагрузок, в то время, как высокая поверхностная твёрдость способствует стойкости против износа. Сокращается и расход металлов/сплавов.

Практический диапазон толщины покрытий, содержащих карбиды вольфрама – 100…250 мкм.

Применяются следующие методы нанесения поверхностных покрытий из карбида вольфрама:

  1. Газопламенное напыление.
  2. Плазменное напыление.
  3. Детонационное нанесение.

При газопламенном напылении мелкодисперсный порошок карбида расплавляется теплом кислородно-ацетиленового пламени, температура в факеле которого достигает 20000С. Скорость движения частиц в газовом потоке достигает 150…200 м/с, вследствие чего они приобретают большую кинетическую энергию. Она позволяет частицам легко внедряться в микропустоты на поверхности основного металла, а застывая там, образовывать прочное покрытие.

Технология  газопламенного напыления обладает существенным недостатком. Наличие кислорода в пламени способствует частичному выгоранию углерода. Поэтому более качественными процессами напыления, являются технологии с применением плазмы. Высокотемпературная (более 50000С) плазма исключает попадания в зону обработки даже атомарного кислорода, поэтому химсостав конечного карбидсодержащего слоя полностью соответствует исходному. Кроме того, производительность плазменного напыления выше, чем газопламенного, т.к. в последнем случае рабочую камеру периодически приходится очищать от остатков выделившегося углерода методом аргонной откачки.

При детонационном напылении деталь помещают в подвижную среду, где находятся взвешенные частицы карбидов вольфрама. Объём герметизируется, после чего среда поджигается. Возникающие в результате высокие температуры резко увеличивают скорость перемещения взвешенных частиц, которые равномерным слоем откладываются на поверхности детали.

Литература

  • Михайлова М., Филиппов В., Муслаков В. Магнитомягкие ферриты для радиоэлектронной аппаратуры. Справочник. — М. Радио и связь, 1983.
  • Куневич А. В. Ферриты, каталог М., 1991
  • Куневич А. В., Подольский А. В. Сидоров И. Н. «Ферриты: Энциклопедический справочник. Магниты и магнитные системы. Том 1» издательство Лик, 2004 г.
  • Журавлев Г.И. Химия и технология ферритов — Ленинград: Химия. Ленингр. отд-ние, 1970. — 191 с.
  • Смит, Я., Вейн, Х. Ферриты. — Москва: Иностранная литература, 1962. — 504 с.

Сплавы

Ввиду плохой обрабатываемости карбид вольфрама применяют не в чистом виде, а создают сплавы с ним. Наиболее распространены твердые варианты с кобальтом. Также встречаются более сложные сплавы, включающие карбид тантала и титана. При этом вольфрам в любом случае преобладает, составляя 70 — 98%.

Ввиду высокой температуры плавления при создании сплавов рассматриваемого материала не используют такие технологии, как легирование, плавление и смешение, так как они нерентабельны. Вместо этого применяется порошковая металлургия. Принцип данного метода состоит в использовании порошков основного металла и примеси. При этом они значительно отличаются температурой плавления. Их смешивают барабанно-шаровой мельницей и прессуют в близкую к целевой форму. Ей придают монолитность путем спекания при температуре, меньшей точки плавления основного металла. Далее приведена последовательность выполнения.

Порошок карбида вольфрама измельчают до гранул целевого размера, предварительно увлажнив. Данный параметр определяется назначением материала, так как обуславливает конечные параметры изделий. Далее порошок смешивают со связующим веществом, представленным, например, кобальтом либо прочими металлами, и восковой мягкой смазкой, служащей для скрепления гранул после брикетирования.

После этого порошок сушат в распылительной или вакуумной сушилке, удаляя большую часть влаги. С целью улучшения текучести полученных гранул производят пеллетизацию, придавая им шарообразную форму.

Существует несколько технологий придания порошку формы. Наиболее распространены среди них литье под давлением и прессование. Новейшим методом является 3D-печать. В завершении формирования частицы скреплены связующим восковым веществом.

Далее форму подвергают нагреву. В результате удаляется восковый загуститель, а гранулы тугоплавкого металла скрепляются частицами расплавленного связующего металла после охлаждения. В рассматриваемом случае тугоплавким металлом является карбид вольфрама. Параметры конечного материала определяются долей связующего вещества: чем его больше, тем выше износостойкость и прочность, чем меньше — тем больше твердость и хрупкость.

По завершении спекания предмет подвергают конечной обработке в виде шлифовки и т. д. К тому же на изделия из карбида вольфрама нередко наносят дополнительное защитное покрытие.

Вольфрамокобальтовые сплавы характеризуются минимальным напряжением на срез, значительной зависимостью параметров от доли кобальта, плохой обрабатываемостью. Первая особенность обуславливает неуместность таких материалов для применения в условиях сдвиговых деформаций. Из-за плохой подверженности обработке перед использованием заготовки из них пластифицируют либо спекают. Наличие кобальта повышает эксплуатационные температуры карбидов вольфрама до 700 — 800°С. По данному параметру они превосходят все марки сталей, кроме жаропрочных. Следует отметить, что, в отличие от чистого карбида вольфрама, его соединения в некоторых соотношениях с кобальтом токсичны.

Физико-химические характеристики

Чистый вольфрам – в числе первых по плотности, твердости, первый по температуре плавления и кипения среди металлов. Эти физические свойства дополняет химическая стойкость даже при запредельных температурах.

Свойства атома
Название, символ, номер Вольфра́м / Wolframium (W), 74
Атомная масса
(молярная масса)
183,84(1) а. е. м. (г/моль)
Электронная конфигурация 4f14 5d4 6s2
Радиус атома 137 пм
Химические свойства
Ковалентный радиус 170 пм
Радиус иона (+6e) 62 (+4e) 70 пм
Электроотрицательность 2,3 (шкала Полинга)
Электродный потенциал W ← W3+ 0,11 В
W ← W6+ 0,68 В
Степени окисления +2, +3, +4, +5, +6
Энергия ионизации
(первый электрон)
 769,7 (7,98) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 19,25 г/см³
Температура плавления 3695 K (3422 °C, 6192 °F)
Температура кипения 5828 K (5555 °C, 10031 °F)
Уд. теплота плавления 285,3 кДж/кг
52,31 кДж/моль
Уд. теплота испарения 4482 кДж/кг 824 кДж/моль
Молярная теплоёмкость 24,27 Дж/(K·моль)
Молярный объём 9,53 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
объёмноцентрированная
Параметры решётки 3,160 Å
Температура Дебая 310 K
Прочие характеристики
Теплопроводность (300 K) 162,8 Вт/(м·К)
Номер CAS 7440-33-7

При 1580°C легко куется, вытягивается до тонкой проволоки.

Данные преимущества создает структура вещества.


Тугоплавкий прочный металл, светло-серого цвета — вольфрам

На воздухе с относительной влажностью менее 60% сопротивление металла коррозии стопроцентное.

Примечания

  1. 123Косолапова Т. Я. Карбиды. — Металлургия, 1968. — С. 300.
  2. 1 2 3Третьяков В. И. Основы металловедения и технологии производства спеченных твердых сплавов. — Металлургия, 1976. — С. 24-268. — 528 с.
  3. Тот Л. Карбиды и нитриды переходных металлов. — Мир, 1974. — С. 21-23. — 296 с.
  4. Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 420-421. — 623 с. — 100 000 экз.
  5. 12Самсонов Г. В. Физическое материаловедение карбидов. — Наукова думка, 1974. — С. 79-397. — 454 с.
  6. Киффер Р., Бенезовский Ф. Твердые сплавы. — Металлургия, 1971. — С. 47. — 392 с.
  7. 12Самсонов Г. В., Виницкий И. М. Тугоплавкие соединения (справочник). — Металлургия, 1976. — С. 560.
  8. Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. — Химия, 2000. — С. 330. — 480 с.
  9. Литера H (Hartkern) в обозначении германских боеприпасов ВМВ означает «с твёрдым металлокерамическим сердечником».
  10. Так 20-мм БПС марки DM43 при стрельбе из пушки MK 20 RH 202 (начальная скорость 1100 м/с) на дальности 1000 м способен пробить 35 мм стальной брони при угле соударения 0°, и лишь 8 мм брони при угле 60°. Jane’s Infantry Weapons 1996-97, 456.
  11. Дмитрий Сафин. [science.compulenta.ru/570052/ Представлен малозатратный способ электролитического получения водорода] (рус.). Компьюлента (15 октября 2010). — Подготовлено по материалам Wiley. Проверено 16 октября 2010.
  12. [www.nanorf.ru/events.aspx?cat_id=223&d_no=1389&print=1&back_url=%2fevents.aspx%3fcat_id%3d223%26d_no%3d1389 15.04.2009 Опасна ли для здоровья нанопыль карбида вольфрама?] Российский электронный наножурнал (нанотехнологии и их применение)
  13. [www.microelements.ru/W Вольфрам. W.]

Свойства

Рассматриваемое вещество представлено серым порошком в двух кристаллографических вариантах: с кубической (полукарбид) и гексагональной (монокарбид) решетками. Обе модификации встречаются в температурном диапазоне 2525 — 2755°С. Вторая фаза ввиду отсутствия области гомогенности при отклонении от стехиометрического состава образует графит или переходит в W2C, а при температуре более 2755°С разлагается до углерода и первой фазы. Последняя отличается обширной областью гомогенности, сокращающейся при снижении температуры.

Монокарбид вольфрама менее тверд в сравнении с полукарбидом, но способен формировать кристаллы. Второй вариант значительно более температуро- и износоустойчив. К тому же он способен к внедрению в твердые растворы.

Карбид вольфрама отличается хрупкостью, но под влиянием нагрузки проявляет пластичность полосами скольжения.

Кристаллы рассматриваемого вещества характеризуются анизотропией твердости от 13 до 22 ГПа на разных кристаллографических плоскостях.

Монокарбид имеет температуру плавления 2870°C, кипения — 6000°C. Его молярная теплоемкость равна 35,74 Дж/(моль-*К), теплопроводность — 29,33 кДж/моль. Плотность карбида вольфрама данного типа составляет 15,77 г/см3.

Несмотря на то, что температура плавления большая, термостойкость рассматриваемого материала низка. Это обусловлено отсутствием термического расширения ввиду жесткой структуры. При этом карбид вольфрама характеризуется высокой теплопроводностью. С повышением температуры данный параметр у монокарбида возрастает вдвое быстрее, чем у полукарбида.

Кольцо из карбида вольфрама

Рассматриваемые материалы имеют хорошую электропроводность, особенно полукарбид (в 4 раза выше, чем монокарбид). Удельное электросопротивление возрастает с повышением температуры, но при этом снижается упругость. Это обуславливает обрабатываемость электрофизическими методами. Так, при введении источника тепла в области обработки возрастает температура, способствуя размеренному разрушению структуры материала.

Твердость определяется температурой формирования карбидов в вольфрамовом порошке и (в меньшей степени) их пористостью. С ростом температуры увеличивается подвижность атомов составляющих соединения элементов, вследствие чего устраняются дефекты в зернах. Анизотропия параметров карбидов вольфрама меньше, чем для металлов. К тому же данные материалы отличаются наилучшей для тугоплавких металлов упругостью, которая увеличивается с ростом пористости. Однако пластичность низкая (до 0,015%).

Микроструктура карбида вольфрама

Карбид вольфрама характеризуется стойкостью к многим кислотам, а также их смесям при обычной температуре, но растворим в некоторых кислотах при кипении. Не подвержен растворению в 20% и 10% гидроксиде натрия. Ввиду высокой летучести оксида вольфрама начинает окисляться при 500 — 700°C и завершает окисление при более 800°C.

Наконец, ввиду химической инертности данное соединение нетоксично.

Особенности сплава

Вольфрам обладает индивидуальными физическими и химическими свойствами. Благодаря своим характеристикам, этот металл применяется во многих сферах. Часто его используют при изготовлении лезвий для пилорам и других электрических пил.

Характеристики вольфрама:

  1. Температура плавления – 3422 градуса по Цельсию.
  2. Плотность равна плотности золота – 19,25 г на см3.
  3. Высокая теплопроводность и теплоёмкость.
  4. При нагревании металл становится пластичным, что позволяет изготавливать из него проволоку. Полученную проволоку затем, используют во многих сферах.
  5. Металл имеет серебристую окраску, который не темнеет и не ржавеет на солнце.
  6. Экономичен при производстве ножей – полученное лезвие получается прочным и не тупится при частом применении.
  7. Данный сплав по степени прочности превосходит золото, серебро и другие популярные металлы. Однако, при необходимости, кольцо из карбида вольфрама не сможет менять размер. Оно не растянется со временем и его будет сложно снять.

Существует и монокарбид вольфрама, который имеет меньшую твёрдость, в сравнении с полукарбидом. Однако, он может формировать кристаллы. Монокарбид также имеет повышенную устойчивость к температуре и разрушениям.


Финка из вольфрама.

Химический состав

Карбид вольфрама – устойчивое соединение, на которое не влияют основные щёлочи и кислоты. При комнатной температуре может раствориться в азотной кислоте.

Не даёт реакции при взаимодействии с такими кислотными соединениями:

  • серная;
  • соляная;
  • азотная;
  • хлорная.

Окисляется при температуре выше 800 градусов по Цельсию. При определённых соединениях горит в жидком кислороде.

Карбид вольфрама обладает металлической проводимостью и повышенным электросопротивлением. Карбиды обладают высокой тугоплавкостью за счёт связей между атомами в кристаллах. Высокая прочность сохраняется и после обработки высокими температурами.


Нож из вольфрама.

Смесь карбидов получают за счёт нагревания смеси из порошка вольфрама и сажи. Нагрев должен проводиться при температуре 1000 -1500 градусов по Цельсию. В качестве сравнения, исследователи приводят температуру базальтовой лавы – 1200 градусов по Цельсию.

Температура может меняться в зависимости от типа порошка. Так, мелкозернистый порошок получают при температуре 1300 градусов по Цельсию, а крупнозернистый – при температуре 1600 градусов.

Этот сплав поддаётся полировке, которая сохранит блеск на протяжении нескольких лет.

Строй — калькуляторы

Получение вольфрама

В чистом, самородном виде металл в природе не встречается. Большинство месторождений образовано оксидами. Содержание соединений в пересчете на чистый металл в рудном месторождении составляет 0.2 — 2%.Химическая стойкость и высокая температура плавления допускают получение вольфрама из руды только при использовании специфических методик.

Вольфрамовые прутки

В основе большинства методов промышленного получения вольфрама лежит восстановление металла из его оксида. Первая стадия производства состоит в обогащении вольфрамосодержащей руды. Затем при помощи операций выщелачивания и восстановления получают оксид WO3, который восстанавливают до чистого металла в атмосфере водорода. Температура процесса составляет около 700 °С.

В результате реакции получается тонкодисперсный металлический порошок. Высокая температура плавления не позволяет оформить металл в виде слитков, поэтому порошок вольфрама сначала прессуют под высоким давлением, а затем спекают в среде водорода, используя нагрев до температуры 1300 °С. Через полученные бруски пропускают мощный электрический ток. В результате высокого переходного сопротивления между зернами металла происходит нагрев и плавление заготовки.

Очистку полученного слитка производят методом зонной плавки, подобно технологии получения сверхчистых полупроводников. Производство вольфрама по данной технология позволяет получить металл высокой степени чистоты без дополнительных операций очистки.

При производстве сплавов, все составляющие добавляются еще перед стадией прессования порошка, поскольку в дальнейшем это сделать уже невозможно. В процессе прессовки, спекания и дальнейшей обработки заготовки (прессование, прокатка) обеспечивается равномерное распределение примесей в сплаве.

Вольфрам

Обработка вольфрама производится при температурах около полутора тысяч градусов. При таком нагреве металл становится очень пластичным и допускает ковку, штамповку. Тонкая проволока для спиралей ламп накаливания изготавливается методом волочения. При этом кристаллы металлы располагаются вдоль проволоки, повышая ее прочность. Поскольку к спиралям ламп предъявляются высоки требования по однородности, вольфрамовый провод дополнительно подвергают операциям электрохимического полирования.

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector