Фрикционная передача

Классификация передач

Фрикционные передачи бывают:

  • с параллельными валами
  • с пересекающимися валами
  • с внешним контактом
  • с внутренним контактом

по возможности варьирования передаточного отношения

  • нерегулируемые (i=const)
  • регулируемые (фрикционный вариатор)

по возможности изменения передаточного отношения при наличии промежуточных тел в передаче по форме контактирующих тел

  • цилиндрические
  • конические
  • сферические
  • плоские

Вариаторы

Вариаторы — переда­чи, посредством которых можно плавно, бесступенчато изменять передаточное число. По форме тел вращения вариаторы бывают лобовые, конусные, торовые и др.

Лобовые вариаторы (рис. 169) применяются в винтовых прессах и приборах. В наиболее простом из них (рис. 169, I) ведущий ролик катится по торцовой поверхности большого диска и передает ему вращение. Движение можно передавать и в обрат­ном направлении — от диска к ролику. Для регулирования скорости вращения ролик передвигают вдоль диска. Передаточное отношение в таких ва­риаторах равно i = R1/R2,

где: R1 и R2 — радиусы колес.

В более сложном плоском вариаторе (рис. 169, II) между дву­мя большими дисками вращается передвижной ролик. Один диск веду­щий, другой — ведомый. Ролик служит промежуточным звеном, переда­ющим вращение. При регулировании скорости ролик перемещают вдоль обоих дисков, причем, приближаясь к центру одного из них, он в то же са­мое время удаляется от центра другого. Поэтому изменение передаточно­го отношения и плавное регулирование скоростей вращения производит­ся быстрее и в более широких пределах, чем в вариаторе с одним диском.

Рис. 169

Вариаторы с раздвижными конусами (рис. 170) имеют огра­ниченное применение в машиностроении. Конические диски насажены на два параллельных вала I и II. Между дисками зажато стальное кольцо, ко­торое передает движение от ведущего вала к ведомому. Изменение переда­точного числа осуществляется сближением одной пары конусов и раздвижением другой.

Рис. 170

Рис. 171

На рис. 171 представлены торов ые вариаторы. На валах I и II насажены два диска, имеющие сферические рабочие поверхности. Вращение от ведущего диска I к ведомому II передаются посредством двух  промежуточных роликов 1, свободно сидящих на осях 2. Изменение передаточного числа осуществляется одновременным поворотом этих осей вокруг шар­ниров 3. Торовые вариаторы требуют довольно высокой точности изготовления­.

Основные характеристики фрикционной передачи

Для расчета фрикционной передачи необходимо учитывать следующие критерии

  1. Передаточное число – величина, равная отношению числа зубьев ведомого и ведущего валов. Оно оказывает воздействие на скорость передачи крутящегося момента от мотора к приводу узла. Эта характеристика равна отношению угловых скоростей катков. Также передаточное количество можно выразить при помощи отношения частот вращения или диаметров катков. В большинстве фрикционных механизмов его значение меньше или равно 7.
  2. КПД: указывает количество утраченных мощностей. Зависит от числа потерь во время качения и скольжения. Величина этого параметра рассчитывается экспериментальным методом, при помощи сравнения мощностей ведущего и ведомого валов. Средний КПД фрикционных механизмов равняется 90%.
  3. Контактная прочность: характеризует способность передачи выдерживать крупные нагрузки. Оценивается при помощи контактного напряжения, возникающего в месте соприкосновения катков. Чем ниже контактная прочность конструкции, тем сильнее изменяется форма основных деталей во время соприкосновения. Рассчитать эту характеристику можно при помощи формулы Герца, где учитываются коэффициент нагрузки, приведенный радиус кривизны, модуль упругости и сила сжатия катков.
  4. Тип движения катков: характеризует траекторию движения рабочих тел вращения. Оно может быть реверсивным и нереверсивным. При реверсивном движении рабочие тела вращения перемещаются в противоположных направлениях, что позволяет осуществлять передачу 2 путями. При нереверсивном движении катки движутся в 1 направлении. Передача производится только 1 единственным способом.
  5. Материал тел качения – характеристика, влияющая на износостойкость устройство, контактную прочность, коэффициент трения и модуль упругости. Чаще всего при изготовлении деталей кинематической пары используется металлокерамика или сочетание стандартной и закаленной стали (закалка до 60 HRC). Эти материалы уменьшают габариты механизма и увеличивают величину КПД. При использовании чугуна катки смогут работать без использования смазки. Наиболее дешевым материалом являются фрикционные пластмассы и текстолит. Но они обладают низким КПД: 50%. Высокими показателями трения обладают валы с кожаным или деревянным покрытием. Минусом этих материалов является низкая контактная прочность.

В следующей таблице указана величина коэффициента трения для фрикционных передач из разных материалов:

Покрытая смазкой сталь 0,04 – 0,05
Сталь с сухой поверхностью 0,14 – 0,19
Фрикционная пластмасса с высушенной поверхностью 0,36 – 0,46
Текстолит с высушенной поверхностью 0,31 – 0,36
Металлокерамика с сухой поверхностью 0,29 – 0,34

Эти факторы и характеристики учитываются при изображении фрикционной передачи на кинематических схемах.

Характер и причины отказов фрикционных передач

Главным параметром фрикционных устройств, определяющим их износоустойчивость, считается контактная прочность, оцениваемая по напряжениям смятия плоскости в месте соприкосновения катков. Выделяет следующие виды разрушения механизмов для преобразования движений:

  1. Усталостное разрушение. Оно появляется в механизмах, обработанных смазочными материалами.
  2. Износ звеньев кинематической пары. Свойственен для передач высушенной поверхностью. Возникает при буксовании рабочих поверхностей, что обусловлено несоблюдением главного условия работоспособности.
  3. Абразивный износ: происходит при загрязнении смазочных материалов твердыми частицами.
  4. Коррозийный износ: возникает при химическом воздействии или окислении материалов рабочих поверхностей катков. Окисление происходит в условиях высоких температур, при недостаточной смазке. Интенсивное окисление может произойти при низких температурах и пластических деформациях рабочих тел вращения.
  5. Задир плоскости, обусловленный разрывом смазочной пленки. Появляется в быстроходных системах при высоких нагрузках.

Выделяют следующие факторы отказов фрикционных передач:

  1. Выкрашивание: свойственно для закрытых видов передачи, работающих с высушенной поверхностью. Прижимная сила повышает напряжение на контактных поверхностях фрикционных звеньев. В итоге сего влияния образуются трещинки маленьких объемов. Они заполняются смазочными материалами, что приводит к частичному или полному выкрашиванию части и появлению раковин на поверхностях катков.
  2. Заедание: свойственно для передач с быстрым ходом. Из-за сильных нагрузок происходит разрыв смазочной пленки. В месте соприкосновения мгновенно повышается температурный режим, что приводит к молекулярному сцеплению частиц металла в месте соприкосновения поверхностей катков. После длительного воздействия высоких температур происходит сварка железных механизмов и нарушение конструкции валов. Приварившиеся части задирают плоскости катков в направленности скольжения. На рабочей поверхности образуются крупные борозды.
  3. Диспергирование: возникает на отдельных участках поверхности трения, характерно для катков, работающих на граничной смазке при умеренных температурах. Разрушение поверхностного слоя происходит без разрыва масляной пленки.
  4. Смятие (пластические деформирование): проявляется в виде блестящих полос на конических дисках. Обусловлено большими силами прижатия и недостаточной прочности рабочих поверхностей передачи.
  5. Изнашивание: обусловлено воздействием упругого скольжения, возникшего в зоне соприкосновения рабочих тел. Из-за повышенного трения детали постепенно изнашиваются, понижается показатель КПД и появляется непостоянство передаточного числа.

Для предотвращения отказа фрикционных устройств нужно рассчитать контактную прочность прибора. Катки обязаны быть изготовленными из жестких материалов, выдерживающих высочайшее контактное усилие. Предотвратить заедание плоскостей возможно с поддержкой противозадирных масел. Они увеличивают коэффициент трения в 1,5 раза.

Зубчатые передачи: виды, достоинства и недостатки зубчатых передач

Подавляющее большинство механических передач имеет в своей основе зубчатые зацепления. Другими словами, в зубчатой передаче усилие передается благодаря зацеплению пары зубчатых колес (зубчатой пары). Зубчатые передачи активно используются, позволяя изменять скорость вращения, направление, моменты.

Основной задачей является преобразования вращательного движения, а также изменение расположения элементов трансмиссии и ряд других функций, которые необходимы для работы узлов, агрегатов и механизмов. Далее мы рассмотрим типы зубчатых передач, их особенности, а также достоинства зубчатых передач и их недостатки.

Зубчатые передачи. Их достоинство и недостатки. область применение, классификации.

Зубчатые передачи. Зубчатая передача — это механизм или часть механизма в состав которого входят зубчатые колёса. Движение передаётся с помощью зацепления пары зубчатых колёс. Меньшее зубчатое колесо принято называть шестерней, большее – колесом. Параметрам шестерни приписывают индекс 1, параметрам колеса – индекс 2.

Достоинства и недостатки зубчатых передач

Достоинства зубчатых передач:

  • Возможность применения в широком диапазоне скоростей, мощностей и передаточных отношений.
  • Высокая нагрузочная способность и малые габариты.
  • Большая долговечность и надёжность работы.
  • Постоянство передаточного отношения.
  • Высокий КПД (87-98%).
  • Простота обслуживания.

Недостатки зубчатых передач:

  • Большая жёсткость не позволяющая компенсировать динамические нагрузки.
  • Высокие требования к точности изготовления и монтажа.
  • Шум при больших скоростях.

Классификация зубчатых передач

По передаточному отношению:

  • С постоянным передаточным отношением;
  • С переменным передаточным отношением.

По форме профиля зубьев:

  • эвольвентные;
  • круговые (передачи Новикова);
  • циклоидальные.

По типу зубьев:

  • прямозубые;
  • косозубые;
  • шевронные;
  • криволинейные.

По взаимному расположению осей валов:

  • с параллельными осями (цилиндрические передачи с прямыми, косыми и шевронными зубьями);
  • с пересекающимися осями (конические передачи);
  • с перекрещивающимися осями.

По форме начальных поверхностей:

  • цилиндрические;
  • конические;
  • гиперболоидные;

По окружной скорости колёс:

  • тихоходные;
  • среднескоростные;
  • быстроходные.

По степени защищенности:

  • открытые;
  • закрытые.

По относительному вращению колёс и расположению зубьев:

  • внутреннее зацепление (вращение колёс в одном направлении);
  • внешнее зацепление (вращение колёс в противоположном направлении).

Виды разрушений зубьев

2. Заедание зубьев наблюдается в высоконагруженных и высокоскоростных зубчатых, а также червячных передачах

В местах контакта из-за трения развивается высокая температура, способствующая снижению вязкости масла, разрыву масляной пленки и образованию металлического контакта зубьев. Происходит молекулярное сцепление (микросварка) частиц металла. Растет сопротивление вращению, наросты металла на зубьях задирают рабочие поверхности сопряженных зубьев.

3. Поломка зубьев. Причина – напряжение изгиба σF. Это основной вид разрушения высокотвердых

(Н ≥ 56 HRC)и открытых передач. В открытых передачах в результате плохой смазки и абразивного истирания поверхностей зубьев от грязи выкрашивание не успевает развиться, но уменьшаются размеры сечений зубьев, растут напряжения изгиба σF. Возрастают зазоры, удары, шум. Усталостная поломка в этом случае связана с развитием трещин 3 на растянутой стороне ножки зуба (рис.4.3, б). В высокотвердых передачах зубья хрупкие, поверхность их имеет хорошее сопротивление выкрашиванию, но хуже противостоит прогрессирующему трещинообразованию в основании зуба.

4. Смятие рабочих поверхностей (пластические сдвиги) или хрупкое разрушение

(Н ≥ 56 HRC)зубьев при кратковременных значительных перегрузках или ударном приложении нагрузки.

5. Отслаивание твердого поверхностного слоя при значительных контактных напряжениях и зарождении усталостных трещин в глубине под упрочненным слоем.

Общее описание

Для того чтобы передать усилия, ранее использовался повсеместно лишь один метод — ременный, который имел важное промежуточное звено — ремень. В нашем же случае способ меняется

Ненужный переходник исключается, вместо него появляется сцепление между элементами.

Таким образом, увеличивается не только уровень надежности и минимизируется размер всей системы, но также достигается и еще одно важное преимущество. Снижается расход энергии, необходимый для активации всей конструкции

Существует масса ключевых факторов, которые определяют эффективность, сферу применения механизма. Разумеется, важным аспектом становятся габариты, материал производства и точность.

Если говорить про общие сведения о зубчатых передачах, нужно знать, что в хорошем продукте между зубьями всегда присутствует зазор. Они не располагаются вплотную. Иначе скольжение будет невозможным по определению. А также будет крайне неудобно смазывать подвижные части. Эксплуатационный срок, равно как и эффективность применения будет значительно снижена. Не нужно забывать, что многие типы производства подразумевают образование высоких температур на производственных площадках. А сами механические детали во время работы ввиду банальной силы трения разогреваются. Значит, металл будет расширяться, незначительно увеличиваться в размерах. И без зазора зубья просто встанут, упираясь друг в друга и заблокировав дальнейший ход.

Поэтому выбор конечного продукта всегда стоит останавливать на том, что точно не подведет. Именно поэтому мы в всегда внимательно относимся к деталям. И любая часть наших станков и иной продукции отвечает не только всем требованиям нормативной документации, но и желаниям наших клиентов.

Конструкция и основные компоненты

Многодисковая фрикционная муфта конструктивно представляет собой пакет из стали и чередующихся фрикционных дисков. Их количество напрямую зависит от того, какой крутящий момент необходимо передать между валами.

Итак, шайбы в сцеплении бывают двух типов — стальные и фрикционные. В чем разница между ними Дело в том, что второй тип шкива имеет специальное покрытие, называемое «фрикционным». Он изготовлен из материалов с высоким коэффициентом трения: керамики, углеродных композитов, кевларовой нити и т. Д.

Самыми распространенными фрикционными дисками являются стальные диски с фрикционным слоем. Однако не всегда они на стальной основе, иногда эти детали муфты изготавливают из прочного пластика. Диски прикреплены к ступице приводного вала.

Обычные стальные диски без трения устанавливаются в барабан, соединенный с ведомым валом.

Сцепление также содержит поршень и возвратную пружину. Под действием давления жидкости поршень давит на дисковый пакет, создавая между ними силу трения и передавая крутящий момент. После сброса давления пружина возвращает поршень, и сцепление отпускается.

Есть два типа многодисковых муфт: сухие и мокрые. Второй тип устройства частично заполнен маслом. Смазка важна для:

  • более эффективного отвода тепла;
  • Смазка деталей муфты.

Мокрое многодисковое сцепление имеет один недостаток — низкий коэффициент трения. Производители компенсируют этот недостаток увеличением давления на диски и применением новейших фрикционных материалов.

Применение – фрикционная передача

Применение фрикционных передач в настоящее время ограничивается средними и малыми мощностями, так как при больших моментах соответственно возрастают усилия прижатия и передачи получают значительные габариты.

Применение фрикционных передач для больших мощностей приводит к соответствующему возрастанию усилий на валы и опоры и увеличению габаритов передачи. Фрикционные передачи не могут применяться в тех механизмах, где недопустимо накопление ошибок в углах поворота звеньев, что связано с наличием скольжения в этих передачах.

Применение фрикционных передач для больших мощностей приводит к соответствующему возрастанию нагрузок на валы и опоры и увеличению габаритов передачи.

Правомерно применение слоеных фрикционных передач г полностью уравновешенным. При необходимости большой редукции можно применять фрикционные волновые передачи, но они работают с существенной потерей скорости.

В обычных случаях применения планетарных фрикционных передач, когда требуются значительное расширение диапазона регулирования фрикционной передачи и редуцирование чисел оборотов, применяются схемы, в которых передаточное отношение выражается разностью двух членов ( табл. 138), а не суммой. При этом целесообразно выбирать схемы, в которых ведомый вал соединяется с наиболее тихоходным элементом планетарной передачи – с водилом.

В обычных случаях применения планетарных фрикционных передач, когда требуются значительное расширение диапазона регулирования фрикционной передачи и редуцирование чисел оборотов, применяют схемы, в которых передаточное отношение выражается разностью двух членов ( табл. 7), а не суммой. При этом целесообразно выбирать схемы, в которых ведомый вал соединяется с наиболее тихоходным элементом планетарной передачи – с водилом.

Схемы фрикционных передач для постоянного передаточного отношения.

Последнее является решающим для применения фрикционных передач, так как передачи зацеплением не допускают бесступенчатого регулирования.

Вторым методом регулирования числа оборотов шнека является применение механической фрикционной передачи от электродвигателя с постоянным числом обо – ротов. Регулирование числа оборотов шнека шприц прессов большего размера осуществляют при помощи вариатора скорости с клиновидными ремнями и шестеренчатой передачи. Такие вариаторы пригодны для передачи мощности до 110 кет, но при применении этих передач возникают затруднения при работе на низких скоростях из-за большой величины передаваемого вращающего момента. Обычно для предохранения узлов пресса от перегрузки применяют предохранительный срезной штифт или фрикционную муфту.

Простейшим способом передачи работы между вращающимися валами является применение фрикционной передачи. Фрикционная передача осуществляется обычно при помощи двух гладких колес, прижимаемых одно к другому с определенной силой. Благодаря наличию этой силы при вращении ведущего колеса в месте соприкосновения колес возникает сила трения, через которую передается вращение ведомому колесу. Такую передачу называют фрикционной, а колеса – колесами трения.

Большая величина силы Q является основным фактором, ограничивающим применение фрикционной передачи с цилиндрическими катками. Это наглядно видно из приведенного ниже примера.

Большая величина силы Q является основным фактором, ограничивающим применение фрикционной передачи с цилиндрическими катками. Это наглядно видно из приведенного ниже примера.

Большие нагрузки на валы и опоры и неизбежность проскальзывания между телами качения ограничивают применение фрикционных передач, несмотря на их существенные достоинства – простоту, бесшумность и возможность использования для бесступенчатого регулирования скорости.

Схема цилиндрической фрикционной передачи.| Схемы фрикционных передач с постоянным передаточным числом. а – с цилиндрическими катками. Я – передача катками с клинчатым ободом. а – с коническими катками.

Большие нагрузки на валы и опоры и неизбежность проскальзывания между телами качения ограничивают применение фрикционных передач, несмотря на их существенные достоинства – простоту, бесшумность и возможность использования для бесступенчатого регулирования скорости. Фрикционные передачи с постоянным передаточным числом применяют преимущественно в кинематических цепях приборов.

Механизмы

Помимо описанных вариаций, есть еще парочка, которые являются более редкими, но все столь же результативными. В первую очередь, реечная. Используется не для передачи крутящего момента. Напротив, здесь вращательное движение проходит преобразование с помощью рейки. И на выходе мы видим поступательное. Возможен и обратный процесс.

А также существуют винтовые. Они весьма точны и надежны, поэтому реализуются в различных компактных приборах. Но есть и негативная сторона. Проседает эксплуатационный срок, соприкосновение почти без зазоров, а значит, поверхность просто стирается при работе.

Зубчатые передачи

В зубчатой передаче движение передается с помощью зацепления пары зубчатых колес. Меньшее зубчатое колесо принято называть шестерней, большое – колесом. Термин «зубчатое колесо» относится как к шестерне, так к большому колесу. При написании расчетных формул и указании параметров передачи шестерне присваивают индекс 1, колесу – индекс 2, например: d1 , d2 , n1 , n2 . Зубчатые передачи являются самым распространенным видом механических передач, поскольку они могут надежно передавать мощности от долей до десятков тысяч киловатт при окружных скоростях до 275 м/с. По этой причине они широко применяются во всех отраслях машиностроения и приборостроения.

Достоинства зубчатых передач

К достоинствам этого вида механических передач относятся:

  • Высокая надежность работы в широком диапазоне нагрузок и скоростей;
  • Малые габариты;
  • Большой ресурс;
  • Высокий КПД;
  • Сравнительно малые нагрузки на валы и подшипники;
  • Постоянство передаточного числа;
  • Простота обслуживания;

Недостатки зубчатых передач

Как и любой другой вид механических передач, зубчатые передачи имеют ряд недостатков, к которым относятся:

  • Относительно высокие требования к точности изготовления и монтажа;
  • Шум при больших скоростях, обусловленный неточностями изготовления профиля и шага зубьев;
  • Высокая жесткость, не дающая возможность компенсировать динамические нагрузки, что часто приводит к разрушению передачи или элементов конструкции (для примера – ременная или фрикционная передача при внезапных динамических нагрузках могут пробуксовывать).

Типы фрикционных передач

Специалисты выделяют надлежащие классификация фрикционных устройств:

  1. По характеру изменения передаточного значения: нерегулируемые и регулируемые (фрикционные вариаторы). Передаточное число в нерегулируемых механизмах не изменяется. В регулируемых устройствах передаточное отношение постоянно меняется.
  2. По способу прижатия тел вращения: с переменной или неизменной мощью. В механизмах, где валы соприкасаются с переменной мощью применяются вспомогательные нажимные приспособления.
  3. По условиям функционирования механизмов: открытые и закрытые. Открытые передачи работают только при использовании смазочных материалов. Закрытые механизмы могут функционировать с сухой поверхностью.

В зависимости от местоположения валов эксперты выделяют 3 основных вида фрикционных передач:

  1. Цилиндрическая: механизм с параллельными осями валов. Ее плоскости выполнены в форме цилиндра. Используется для передачи маленькой мощности. Данный вид передач производится с гладкими, вогнутыми или выпуклыми поверхностями. При использовании цилиндрических кинематических пар со звеньями клиновой формы трение уменьшается на 50%.
  2. Коническая: механизм с пересекающимися осями валов. Оснащается дисками с конической поверхностью. Для ее функционирования не требуется прикладывать большую силу нажатия. Передачи этого типа могут быть как реверсивными, так и нереверсивными.
  1. Лобовая: механизм с лобовой поверхностью и перекрещивающимися осями валов. По причине интенсивного скольжения она содержит невысокий коэффициент полезного воздействия. Предоставляет возможность изменять направление движения и интенсивность вращения валов. Этот тип передачи применяется в маломощных устройствах.

Выделяют отдельную классификацию для вариаторов по числу потоков мощности:

  1. Однопоточные: одноконтактные лобовые или двухконтактные торовые вариаторы.
  2. Многопоточные: многорядные вариаторы с параллельным или последовательно-параллельным соединением контактных пар.
  3. Многопоточные замкнутые вариаторы.
  4. Многопоточные планетарные вариаторы.

Данная классификация условия работы фрикционных механизмов и может использоваться для разработки общих методов расчета отдельных групп передач.

Фрикционные передачи. Достоинства и недостатки

Зубчатые передачи, достоинства и недостатки.

Зубчатая передача — трехзвенный механизм, включающий два подвижных звена, взаимодействующих между собой через высшую зубчатую кинематическую пару и образующих с третьим неподвижным звеном низшие (вращательные или поступательные) кинематические пары (рис. 4.1).

Рис. 4.1. Виды зубчатых передач.

Меньшее зубчатое колесо, участвующее в зацеплении обычно называют шестерней, большее – зубчатым колесом, звено зубчатой передачи, соверша­ющее прямолинейное движение, называют зубчатой рейкой (рис. 4.1, к).

Назначение зубчатой передачи — передача движения (чаще всего вращательного) с преобразованием параметров, а иногда и его вида (реечная передача).

Зубчатые передачи ­вращательного движения наиболее распространены в технике (рис. 4.1, а…и).

Они характеризуются передаваемыми мощностями от микроватт (механизм кварцевых наручных часов) до десятков тысяч киловатт (крупные шаровые мельницы, дробилки, обжиговые печи) при окружных скоростях до 150 м/с.

Наиболее широкое применение находят редуцирующие зубчатые передачи вращательного движения, в том числе и в многоцелевых гусеничных и колесных машинах (коробки передач, бортовые редукторы, приводы различных устройств). Поэтому дальнейшее изложение, если это не упоминается особо, касается только передач вращательного движения.

Достоинства зубчатых передач: 1. Высокая надежность работы в широком диапазоне нагрузок и скоростей. 2. Большой ресурс. 3. Малые габариты. 4 Высокий КПД. 5. Относительно малые нагрузки на валы и подшипники. 5. Постоянство передаточного числа. 6. Простота обслуживания.

Недостатки зубчатых передач: 1. Сложность изготовления и ремонта (необходимо высокоточное специализированное оборудование). 2. Относительно высокий уровень шума, особенно на больших скоростях. 3. Нерациональное использование зубьев – в работе передачи одновременно участвуют обычно не более двух зубьев каждого из зацепляющихся колёс.

Фрикционные передачи. Достоинства и недостатки.

Фрикционная передача — механическая передача, служащая для пере­дачи вращательного движения (или для преобразования вращательного движения­ в поступательное) между валами с помощью сил трения, возникающих между катками, цилиндрами или конусами, насаженными на валы и прижимаемыми один к другому.

Фрикционные передачи состоят из двух катков (рис.9.1): ведущего 1 и ведомого 2, которые прижимаются один к другому силой (на рисунке — пружиной), так что сила трения в месте контакта катков достаточна для передаваемой окружной силы .

Рис.9.1. Цилиндрическая фрикционная передача:

Недостатки

Зубчатые передачи имеют и ряд особенностей, которые могут быть отнесены к их недостаткам. В плане эксплуатации – такой механизм шумит при высокой скорости вращения. Он не может гибко реагировать на изменяющуюся нагрузку, так как представляет собой жесткую конструкцию с точной регулировкой.

В технологическом плане – это сложность изготовления пар колес зацепления. Для такого вида передач требуется повышенная точность, так как зубья находятся в зацеплении при постоянно изменяющемся напряжении. В таких условиях возможны усталостные разрушения материала.

Это происходит при превышении допустимых нагрузок. Зубья могут выкрашиваться, частично или полностью ломаться. Отколовшиеся осколки попадают в механизм, повреждают соседние сопрягающиеся участки, что приводит к заклиниванию и выходу из строя всего узла.

Наибольшее распространение получила цилиндрическая зубчатая передача. Ее применяют в узлах и механизмах с параллельным расположением валов. По конструктивным особенностям различают зубья с прямым, косым и шевронным профилем.

Для перекрещивающихся валов используют червячную, винтовую цилиндрическую передачи, а для пересекающихся – коническую. Реечная передача отличается тем, что шестерня в общем парном механизме заменяется рабочей плоскостью. При этом на ней нарезаны зубья, идентичные по профилю колеса. В итоге вращательное движение преобразуется в поступательное.

Также разделяют передачи по скорости вращения: тихоходные, средние и скоростные. По назначению их делят на силовые и кинематические (не передающие значительной мощности). Кроме того, зубчатые передачи могут классифицироваться по величине передаточного числа, подвижности осей (рядовые и планетарные), числу степеней, точности зацепления (12 классов), способу изготовления. По форме профиля зуба могут быть эвольвентные, циклоидальные, цевочные, круговые.

Принцип действия муфты

Основная задача многодисковой муфты — плавное соединение и отключение входного (ведущего) и выходного (ведомого) валов в нужный момент за счет силы трения между дисками. В этом случае крутящий момент передается с одного вала на другой. Диски сжимаются давлением жидкости.

Основное отличие многодискового механизма от других заключается в том, что при увеличении количества дисков увеличивается количество контактных поверхностей, что дает возможность передавать больший крутящий момент.

Основой нормальной работы фрикционной муфты является наличие регулируемого зазора между дисками. Этот интервал должен соответствовать значению, установленному производителем. Если зазор между дисками сцепления меньше заданного значения, сцепления постоянно находятся в «сжатом» состоянии и соответственно быстрее изнашиваются. Если расстояние больше, во время работы наблюдается пробуксовка сцепления. И в этом случае не избежать быстрого износа. Точная регулировка зазоров между муфтами при ремонте муфты является ключом к ее правильной работе.

Подведем итоги

Как видно, зубчатая передача является достаточно распространенным решением, которое используется в различных узлах, агрегатах и механизмах. С учетом того, что существует несколько типов таких передач, перед использованием одного или другого вида, в рамках проектирования конструкторы учитывают кинематические и силовые характеристики работы разных механизмов и агрегатов.

При этом основными условиями, которые определяют срок службы зубчатой передачи и ее ресурс, принято считать общую износостойкость поверхностей зубьев, а также прочность зубьев на изгиб

Чтобы получить нужные характеристики, в рамках проектирования производства зубчатых механизмов указанным особенностям уделяется отдельное повышенное внимание

Гипоидная передача в устройстве трансмиссии автомобиля: что такое гипоидная передача, в чем ее особенности и отличия, а также преимущества и недостатки.

Дифференциал коробки передач: что это такое, устройство дифференциала, виды дифференциалов. Как работает дифференциал КПП в трансмиссии автомобиля.

Главная передача в устройстве трансмиссии автомобиля: принцип работы, особенности конструкции. Виды главных передач по типу зубчатого соединения.

Понижающая (пониженная) передача: назначение передачи, особенности работы. Как пользоваться понижающей передачей и когда включать пониженную передачу.

Карданная передача: что это такое, устройство, особенности, принцип работы. Виды карданных передач в устройстве автомобильной трансмиссии.

Устройство полного привода, виды и типы полного привода, схема устройства привода на полноприводных авто. Полноприводные коробки, особенности.

Поделитесь в социальных сетях:vKontakteEmailWhatsApp
Напишите комментарий

Adblock
detector